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Preface

Plasma physics has matured rapidly as a scientific and technological discipline
with a vast span of relevant application in many different fields. As a con-
sequence, no single textbook is able to address all aspects of plasma physics
relevant to such a burgeoning community.

With this reference text I have attempted to bridge the gap between the
excellent variety of traditional, broadly-based plasma books, and more special-
ist, device-oriented reference texts. David L Book’s NRL Plasma Formulary
was an inspiration, as too was André Anders’ Formulary for Plasma Physics;
however, I believe that this book offers a different perspective which makes
it complementary to existing handbooks. I have tried to give the reader an
overview of the key aspects of plasma physics without being too specialist in
any particular area. Since this book is not a textbook, there is more room
for not just contemporary findings, but also many traditional established re-
sults from the 1950’s and 60’s that are not often found in modern texts, and
which are once more becoming important as imperfectly ionised and bounded
plasmas enjoy a resurgence in relevance.

The diverse nature of the plasma science community is matched by a con-
fusing miscellany of physical units. Throughout this handbook, all formulae
are quoted in both SI and cgs-Guassian units where it is relevant. I hope this
will maximise this book’s practicality and utility, and perhaps even assist the
whole community in the smooth transition to using SI units only....

It has been a guiding principle to reference the source (or sources) of any
formula quoted in this book, together with whatever caveats or restrictions

xv



xvi PREFACE

that apply to its use. Where practical I have referenced the original articles,
subject to the important constraint that verifiable sources are accessible to
the general reader. Please accept my apologies in advance for any misquotes
or omissions, and please do let me know about them. As for the formulae
themselves, I am indebted to Prof E W Laing for his patient and exacting
examination of the manuscript, which led to the elimination of a very large
number of errors. Thanks are also due to my colleagues Brendan Dowds, Hugh
Potts, Richard Barrett, Graham Woan, Norman Gray and Graeme Stewart,
for answering endless questions on IATEX 2¢ formatting and graphics, and
pointing out still more howlers in the ith iterate of the book. Despite all this
invaluable and talented assistance, I have no doubt that there remain, lurking
in dark corners of the text, or even brazenly displayed in large, open areas,
errors in physics and formatting. I have no excuse; please let me know, and I
shall make good these mistakes.

I am also grateful to Prof Ken Ledingham for letting me use his wonderful
image of a laser-produced plasma plume; likewise, to Prof Bill Graham for
the beautiful high-pressure discharge picture.

It is appropriate to acknowledge the kind support offered by David Hughes
in guiding me initially on this project, and latterly Vera Dederichs for patiently
enduring one delay after another in its prosecution. Thanks are also due
to Prof A E Roy for wise advice at the outset. Finally, I am grateful to
my Institute for granting me the sabbatical leave which was instrumental in
allowing me to complete the book.

DECLAN ANDREW DIVER
Glasgow, July 2001
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1.1 BASIC PHYSICAL UNITS
1.1.1 Sl Units

Table 1.1: Fundamental and supplementary SI units

QUANTITY UNIT ABBREVIATION

Fundamental Units

mass kilogram kg
length metre m
time second s
temperature Kelvin K
electrical current ampere A
luminous intensity candela cd
amount of substance  mole mol
plane angle radian rad
solid angle steradian sr

Selected derived units

frequency hertz Hz
force newton N
energy joule J
power watt w
electrical charge coulomb (¢}
electric potential volt A\
electrical resistance ohm Q
capacitance farad F
inductance henry H
magnetic flux weber Wb
magnetic flux density tesla T

Table 1.2: Standard prefixes for SI units

PREFIX SYMBOL FACTOR | PREFIX SYMBOL FACTOR

yotta Y 10%4 deci d 10!
zetta Z 102t centi c 10-2
exa E 1018 milli m 103
peta P 10'5 micro m 106

continued on next page
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MAXWELL'’S ELECTROMAGNETIC EQUATIONS

Table 1.2: continued

PREFIX SYMBOL FACTOR | PREFIX SYMBOL FACTOR
tera T 1012 nano n 10~°
giga G 10° pico p 10712
mega M 10¢ femto f 10718
kilo k 108 atto a 10718
hecto h 10? zepto 2 10~
deca da 10 yacto y 102
1.1.2 cgs-Gaussian Units
For a useful overview of non-SI units see [15].
Table 1.3: Comparison of SI and cgs units
QUANTITY UNIT ABBREV. SI EQUIVALENT
length centimetre cm 10~2m
mass gramme g 10~3kg
time second 8 1s
force dyne dyn 105N
energy erg erg 10773
power erg per second ergs™! 107"W
electrical charge statcoulomb statcoul (3 x 109)~1C
current statamp statamp (3 x 109)71A
electric potential statvolt statvolt 300V
magnetic flux density gauss G 10-4T
1.2 MAXWELL'S ELECTROMAGNETIC EQUATIONS
Table 1.4: Maxwell’s equations
SI cgs-Gaussian
8B 16B ,
VxE =% ==L Faraday’s law
vxmg =9P.; 19D &

== 4 = ’s |
5 paT + cJ Ampere’s law

continued on next page



4 BASIC PHYSICAL DATA

Table 1.4: continued

SI cgs-Gaussian
vV-D =p, = 4mp, Poisson equation
vV-B = =0
D = ¢ 6F =¢.F
B =prioH  =pH

Boundary Conditions The boundary conditions at an interface for Maxwell’s
electromagnetic equations are that the tangential component of E, and the
normal component of B, must each be continuous, where normal means par-
allel to the local normal vector to the interface, and tangential means in the

plane perpendicular to the local normal.

1.3 SPECIAL RELATIVITY

Assume standard inertial frames S and S’, with respective cartesian co-
ordinates (z,y, ), (2',y’, 2') aligned such that the origins O, O’ are co-incident
at time ¢t = #' = 0, with S’ moving with velocity v with respect to S. Subscript
|| will denote the direction of this mutual motion, and subscript L denotes
the orthogonal plane. The Lorentz transformations of various physically sig-

nificant quantities are given in the following table [61]:

Table 1.5: Lorentz transformations

QUANTITY TRANSFORMATION
space-time: =) +ot’) + 7
t="(t+ vril/c2)
invariant: r? — 22
velocity: u = (u + v+ /7)/(1+ /)

momentum-mass:

invariant:

current & charge densities:

P="(p) +m'v) +p)
me = vy,(m'c+ vp'"/c)
P —m2c?

J:’YU(J1|+'UPc)+J{L

continued on next page



Table 1.5: continued

PHYSICAL CONSTANTS

QUANTITY TRANSFORMATION
Pe = 1o(pe + v} /c?)
invariant: JE—cp?

electric & magnetic fields:

E=E|+v(EL—-vxB)

B= Bi, +7 (B +v x E'/c?)

1.4 PHYSICAL CONSTANTS

The values of the constants quoted here are the 1998 CODATA recommended
values [66], reproduced with permission.

Table 1.6: Values of physical constants

QUANTITY SYMBOL VALUE UNITS
speed of light in vac- ¢ 299 792458 ms~!
uum

vacuum permeability o 47 x 1077 Hm™!
vacuum permittivity € 8.854187817--. x 10712 Fm™!
vacuum impedance Zy 376.730313461... Q
gravitational constant G 6.673(10) x 10~1* m? kgts—?
Planck constant h 6.626 068 76(52) x 10734 Jst
Planck mass mp 2.1767(16) x 1078 kg
Planck length lp 1.6160(12) x 1073 m
Planck time tp 5.390 6(40) x 10— s
Avogadro constant Ny 6.022 141 99(47) x 10% mol !
Bohr magneton B 927.400 899(37) x 1026 JT-1

Bohr radius

Boltzmann constant

a  0.5291772083(19) x 107 m

ks 1.3806503(24) x 1023

JK1

continued on next page



6 BASIC PHYSICAL DATA

Table 1.6: continued

QUANTITY SYMBOL VALUE UNITS
elementary charge e 1.602176 462(63) x 107  C
Fine structure con- a 7.297 352 533(27) x 1072
stant

ot 137.035 999 76(50)
Gas constant R 8.314472(15) Jmol t K1
Nuclear magneton LN 5.050 783 17(20) x 10~27 JT-1t
Rydberg constant Ry 10973 731.568 549(83) m~!
Stefan-Boltzmann con- o 5.670 400(40) x 10~ Wm™2K™*
stant
Thomson cross section ge 0.665 245 854(15) x 1028 m?
Wien constant b 2.897 768 6(51) x 103 mK
a particle:
mass Mo 6.644 655 98(52) x 10~%7 kg
-electron mass ratio me/me  7.924299 508(16) x 10°
-proton mass ratio ma/mpy  3.972599 684 6(11)
deuteron:
mass ma  3.34358309(26) x 1027 kg
-electron mass ratio mq/me  7.6704829550(78) x 103
-proton mass ratio mg/mp  1.999007 500 83(41)
magnetic moment B 4.33073457(18) x 10=%7 R
electron:
mass me  9.10938188(72) x 1073 kg
-o particle mass ratio  me/mo  1.370933 561 1(29) x 10~*
-deuteron mass ratio me/mq  2.7244371170(58) x 10~*
-proton mass ratio me/mpy  5.446 170 232(12) x 10~*

continued on next page



DIMENSIONAL ANALYSIS 7

Table 1.6: continued

QUANTITY SYMBOL VALUE UNITS
magnetic moment e —928.476362(37) x 10726 JT!
charge to mass ratio —e/m, —1.758820174(71) x 10'*  Ckg™?
classical radius e 2.817940 285(31) x 10715 m
helion:
mass mn  5.00641174(39) x 102" kg
-electron mass ratio mp/me  5.495 885 238(12) x 10°
-proton mass ratio mp/mp  2.993 152658 50(93)
neutron:
mass mn 1.67492716(13) x 10~27 kg
-electron mass ratio my/me  1.838 683 6550(40) x 10%
-proton mass ratio my/mp  1.001378 418 87(58)
magnetic moment L —0.966 236 40(23) x 10-26  JT-!
proton:
mass mp  1.67262158(13)x 107 kg
-electron mass ratio mp/m.  1.836152 667 5(39) x 10°
-neutron mass ratio mp/myn  0.998 623 478 55(58)
magnetic moment L 1.410606 633(58) x 10726 JT-1
1.5 DIMENSIONAL ANALYSIS
Table 1.7: Dimensions of common variables
SI QUANTITY CcaGs
(¢} ?:—f; farad capacitance l cm
q | ¢ coulomb charge w statcoulomb

continued on next page



BASIC PHYSICAL DATA

Table 1.7: continued

SI QUANTITY CGSs
Pe l% coulomb charge density ,%1% statcoulomb
m~3 cm—3
S r‘;% siemens conductance % cmsg™t
oc 7%2—'; siemens m~! | conductivity 3 g1
I % ampere current &2{{'2 statampere
J {; ampere m~2 | current density ,%% statampere
cm—?
D| # coulomb displacement ;"71;—: statcoulomb
m~2 cm™
| B kgm s dynamic viscosity w poise
E ?PL volt m~* electric field w statvolt cm ™!
¢ l—:{,’l volt electric potential ’Wt 2 statvolt
& %“; joule energy ";—.f,a erg
€ | & joule m™3 energy density [ erg cm ™3
F | newton force b dyne
v % hertz frequency % hertz
L |l metre length l cm
[ '1—;" weber magnetic flux EEmY o axwell
B qﬂt tesla magnetic flux density % gauss
H|{ Am™! magnetic intensity ,"‘—,;;—i oersted
n %1 joule tesla~! | magnetic moment 'm—t’"l-“ oersted cm®

continued on next page



IONIZATION ENERGIES OF GAS-PHASE MOLECULES

Table 1.7: continued

9

SI QUANTITY CGs

m|m kg mass m gram

p| B kgm™ mass density B gm cm ™
P %’E watt power %;ﬂ erg s—1

P | 7 pascal pressure & dyne cm™
R %2'—”‘— ohm resistance % scm™!

n %{—;‘— ohm-m resistivity t ]

& | | watt thermal conductivity | 4 erg

m~1K™1 cm~ig71K1

o %’2 henry m™! vacuum permeability

€ -‘l’% farad m™! vacuum permittivity

A 'q—';' weber m ™! vector potential w gauss cm
wi|l ms? velocity L cm s~1
1.6 IONIZATION ENERGIES OF GAS-PHASE MOLECULES

The energies of first ionization E; for certain gas-phase molecules are given

here, selected from [57]

Table 1.8: Ionization energies of gas-phase molecules

SUBSTANCE FORMULA E;/eV
Argon Ar 15.75962
Carbon dioxide CO, 13.773
Carbon monoxide CO 14.014
Chlorine Cl 12.96764
Chlorine Cl, 11.480
Chlorosilane CIH3Si 114

continued on next page



10 BASIC PHYSICAL DATA

Table 1.8: continued

SUBSTANCE FORMULA E;/eV
Disodium Nag 4.894
Helium He 24.58741
Hydrogen H 13.59844
Hydrogen H, 15.42593
Hydrogen chloride HCI 12.749
Krypton Kr 13.999961
Mercury Hg 10.43750
Neon Ne 21.56454
Nitrogen N 14.53414
Nitrogen Na 15.5808
Oxygen 0 13.61806
Oxygen 0, 12.0697
Silane SiH, 11.00
Silicon Si 8.15169
Sodium Na 5.13908
Water H,0 12.6206
Xenon Xe 12.12987

1.7 CHARACTERISTIC PARAMETERS FOR TYPICAL PLASMAS

Table 1.9: Operating parameters for rf parallel plate plasma etch-
ing, and high-density plasma reactor[9]

QUANTITY RF HIGH-DENSITY
pressure / Pa 1071 — 103 1072 -10
pressure / torr 0.001 - 10 10~ - 107!
power /W 50 — 10° 10?2 — 5 x 108
frequency /MHz 0.1—-100 0.1 —20 or 2.45GHz
gas flow rate / scem ! 10 — 3 x 10° 10 — 200
T,/eV 1-10 1-10
plasma density /m~3 10 — 1017 10'€ — 101°
fractional ionization 1077 - 107 10-% - 107!

ion bombarding energy /eV 50 — 108 10 — 500

continued on next page

Istandard cubic centimetres per second



CHARACTERISTIC PARAMETERS FOR TYPICAL PLASMAS

Table 1.9: continued

11

QUANTITY RF HiGgr-DENSITY
ion bombarding flux / mAcm™2 1072 -5 1-50
magnetic field /T 0 0-0.1

Table 1.10: Tonospheric parameters [32]

IONOSPHERIC REGION HEIGHT/km n./m~ (day)

ne/m ™3 (night)

D 50-90 10° 108

E 90-140 101 <10%°

F, 140-200 3 x 101 1010

F, 200-400 1012 101
Table 1.11: Solar plasma parameters [73, 99]

QUANTITY REGION TYPICAL VALUE
total number density /m—3 photosphere 1022 — 1028
electron number density /m~3  photosphere 1018 — 1020

total number density /m~3 chromosphere 10'6 — 1022
electron number density /m~2  chromosphere 1016 — 1018

total number density /m—3 corona 108 — 108
electron number density /m™®  corona 108 — 1018
temperature /K photosphere 4x10% —-6x 10°
temperature /K chromosphere ~3x10% —10*
temperature /K corona > 108

magnetic field strength /T poles ~107*
magnetic field strength /T sunspot ~0.3

magnetic field strength /T prominence 103 - 102
magnetic field strength /T chromospheric plage ~ 10~2
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2.1 NOTATION

SYMBOL MEANING REF
B magnetic flux density
Ca Alfvén speed for the plasma (2.24)
Cas Alfvén speed for species s (2.22)
Cth gas sound speed (2.25)
Cth,s sound speed for gas species s (2.25)
differential scattering cross-section (2.29)
kB Boltzmann constant
mg mass of particle of species s
M Mach number (2.42)
Ng number density of particles of species s
qs charge carried by particle of species s
R, magnetic Reynolds number (2.43)
s label defining species: i (ion), e (electron), n (neutral)
S Lundquist number (2.41)
T, temperature of gas of species s
é plasma skin depth (2.20)
€ vacuum permittivity
Ap Debye length (2.17)
Amfp mean free path of species n (2.19)
o vacuum permeability
fhs mobility of particle of species s (2.34)
s mobility tensor for species s in a magnetised plasma (2.36)
Ltbs magnetic moment of a particle of species s (2.33)
v non-specific collision frequency
Veg cyclotron frequency of species s (in Hz) (2.9)
Vps plasma frequency of species s (in Hz) (2.3)
Vgt collision frequency for species s and s’ (2.12)
Ps mass density of species s
Oge collision cross-section (2.29)
TA Alfvén transit time (2.13)
TR resistive diffusion time (2.15)
w frequency of electromagnetic wave
Wes circular cyclotron frequency of species s 2.7)
wp circular plasma frequency (2.6)
Wps circular plasma frequency of species s (2.1)
14
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The following quantities are those natural time scales, length scales and other
miscellaneous quantities which can be defined for a uniform plasma uncon-
strained by boundary conditions.

2.2 NATURAL TIMESCALES

2.2.1 Characteristic Frequencies

2.2.1.1 Plasma Frequency The natural (circular) frequency of the collective
oscillation of charged particles under a self-consistent electrostatic restoring
force:

naQaz 1
Wpg = (H) (S1) (2.1)
_ (4mngg,® 1/2
= (") e (2.2
Expressed as true frequencies, these formulae yield for electrons:
Wpe
= Zee 2.
Vpe o (2.3)
~ 9y/ne Hz (ST) (2.4)
~9x10%/mes™ (cgs) (2.5)

Note that the plasma frequency of the whole plasma is given by

1/2
wp = (Z wﬁs) (2.6)

22.1.2 Cyclotron Frequency The natural (circular) frequency of oscillation
of charged particles in the presence of a magnetic field:

¢sB

Wes = m (ST) (27)
~ 22 () (28)

In terms of true frequencies, and for electrons,

Wee

Vee = 5 - (2.9)
~ %SGHZ D (2.10)

13
~ %s“ (cgs) (2.11)

Note that w.s takes the same sign as the charge on the particle.
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2.2.1.3 Collision Frequency The collision frequency is the average rate at
which inter-particle collisions take place, here assumed for simplicity to be
between a mobile species (labelled with subscript s) and a stationary one.
The general formula is given by

Veg = NnOgc,s(Us) (2.12)

where n,, is the number density of stationary targets, o4, is the collision
cross-section, and (u,) is the mean speed of the mobile species.

2.2.2 Characteristic Times

22.2.1 Alfvén Transit Time For an MHD plasma of typical dimension L,
the Alfvén transit time 74 is defined by

TA =

L
o (2.13)

where ¢, is the Alfvén speed, defined in (2.24).

2.2.2.2 Collision Time The general expression for the collision time 7. de-
fines it to be the reciprocal of the collision frequency:

1

= _nnﬁsc(u) (2.14)

Te

where (u) is the mean speed of the colliding particles. Specific definitions can
be found in section 6.3.1.3.

2.2.2.3 Resistive Timescale For a resistive MHD plasma with characteristic
dimension L, the resistive diffusion time 75 is defined by

Mo

= (s (2.15)
LZ
-0 (2.16)

where 7 is the plasma resistivity.
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2.3 NATURAL SCALELENGTHS

2.3.1 Debye Length

The exponential scale length for charge screening within an electron plasma
with stationary ions is the Debye Length Ap:

_ éokBTe /2
Ap = ( Py ) (ST) (2.17)
k T 1/2
_ (41:; ez) (cgs) (2.18)

This expression can be generalised to define a Debye length for each species
8, but is usually reserved for electrons.

2.3.2 Mean Free Path

The mean free path is the average distance a particle moves before successive
collisions (or interactions); it is also therefore the exponential scale factor for
the spatial decay of particle flux as a result of collisions. It is defined by Amgp:

Amtp = (Nn0se) ™! (2.19)

where n,, is the neutral number density, and o, is the collision cross-section
(see (2.29)).

2.3.3 Plasma Skin Depth

The spatial decay constant for electromagnetic radiation of frequency w in-
cident on the boundary of a uniform density plasma of dielectric constant
€:

6= wc:[zm(elﬂ)] (2.20)

See (2.37), (7.135) for examples of plasma dielectric constants. Note that
magnetized plasmas are anisotropic, and have dielectric tensors; see (7.20,
7.152) for details.

2.3.4 Larmor Radius
The radius of the circular orbit of a charged particle in the plane perpendicular
to a uniform magnetic field rz, :

Vis
TLg = — 2.21
e 221)

where v, is the speed in the plane of a particle of species s.
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2.4 NATURAL SPEEDS

2.4.1 Alfvén Speed

The speed typically at which magnetic disturbances are propagated by parti-
cles of species s is given by

1/2
Cas = (HB; ) (1) (2.22)
0Ps
2\ 1/2
= (%p,) (cgs) (2.23)

The Alfvén speed for the whole plasma is given by

1/2
o= (Z cg,) (2.24)

2.4.2 Sound Speed

The speed of sound ¢z, in a gas of particles of species s is defined by

dp
e, = (—’) 2.25
th,s dPs S ( )
Ps0
Ps0 2.26
Pso ( )

where p, is the gas pressure, p, the mass density, and subscript Sy denotes
that the derivative is taken at constant entropy; v is the polytropic index,
defined by the equation of state

PspP, ' = constant (2.27)

An isothermal gas has v = 1; an adiabatic one has v = 5/3. For an ideal gas,
p = nkpT where n is the particle number density, and T is the temperature.
Consequently an alternative form of the sound speed is

k T 1/2
Ciye = (7’;—,’) (2.28)
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2.5 MISCELLANEOUS PARAMETERS

2.5.1 Collision Cross-Section

There are several quantities which can be defined as collision, or scattering,
cross-sections. The total scattering cross-section o, is defined as

us
O = 27r/ I(v,6)dé (2.29)
0

where I(v,0) is the differential scattering cross-section, v is the relative speed
of the scattered particle compared with the target, and 6 is the angle through
which the particle is scattered by the collision. Where the particles are hard,
elastic spheres of radii a; and as, then

O = m(ay + as)? (2.30)

2.5.2 Differential Scattering Cross-Section

The differential scattering cross-section is defined to be the energy radiated
per unit time, per unit solid angle, divided by the incident energy flux.

For Coulomb collisions between charged particles, an elastic scattering pro-
cess, the differential cross-section for scattering into unit solid angle is given
by the Rutherford formula

7,2 Z,%et
I(v0,0) = — 2~ (SI .
(v0,0) @reamavl sn'(0/2) (ST) (2.31)
__ B3
"~ 4mZuhsin®(0/2) (ces) (2:32)

where Z;e is the charge on particle ¢, mg = mima/(my +m2) is the reduced
mass, vg is the relative speed, and © is the collision angle in the centre of
mass frame.

2.5.3 Magnetic Moment

The magnetic moment of a charged particle performing Larmor orbits in a
magnetised plasma:

_ Mav1 s>
Hs 5B

(2.33)

2.5.4 Mobility

The mobility of a plasma particle of species s in a collisional plasma is defined
in simple terms as the magnitude of the mean plasma particle flow produced
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per unit strength of applied steady electric field:

|q8|
— i 2.
s = . (2.34)

Where an external AC electric field of frequency w is applied, the particle
mobility can be re-defined as

q
Hs = las|

W) (2.35)

If the plasma also has an applied magnetic field, then the particle mobility
becomes a tensor:

T A S
? m (v + iw)? + w2,
v4iw  wee 0
—weg VA iw 0 (2.36)
0 0 (v +iw)? + w2,
v+iw

where the magnetic field is taken to lie along the z-axis.

2.6 NON-DIMENSIONAL PARAMETERS

2.6.1 Dielectric Constant

A cold, unmagnetised plasma has a frequency dependent relative dielectric
constant given by

2 1/2
_ _ 3
€= (1 S+ 'il/,,.)) (2.37)

where v, is the electron-neutral collision frequency.

A magnetised plasma has a dielectric tensor, reflecting the intrinsic anisotropy
caused by the magnetic field. The detailed description of the dielectric tensor
depends crucially on the modelling assumptions: see Section 7.2.3 for the cold
plasma model, and Section 7.4.4 for a kinetic treatment.
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2.6.2 Hartmann Number

The Hartmann number, H,, is the ration of the magnetic force to the dissi-
pative force, and is defined by

o = ﬁ (ST) (2.38)
o= ﬁ;l‘/i (cgs) (2-39)

where B is the magnetic induction, 7, is the fluid viscosity, 7 is the resistivity,
and L is a typical scale-length of the system.

2.6.3 Knudsen Number

The Knudsen number KC,, is defined to be the ratio of the mean-free-path of
the gas and the characteristic scalelength L of the gas volume:

_ Amfp
Kn==F (2.40)

K,, is very small for collisionally dominated confined gases, but can rise to
near unity for some low pressure discharges. If KC,, > 1, the flow is termed
(free) molecular flow; K, < 0.01 describes viscous flow; and 0.01 < K, <1
characterises transitional flows.

2.6.4 Lundquist Number

The Lundquist number S for a resistive MHD plasma is the ratio of the
timescales for diffusive processes to that for dynamical processes, and is de-
fined by

s="r

- (2.41)

where 7 and 74 are defined by (2.15) and (2.13) respectively.

2.6.5 Mach Number

The ratio of fluid speed u to the fluid sound speed c;;, is termed the Mach
number:

M =u/ew (2.42)

2.6.6 Magnetic Reynolds Number

The Reynolds number in fluid mechanics is the ratio of the inertial to viscous
forces. In a magnetised plasma of resistivity 7, a magnetic Reynolds number
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can be defined in an analogous way:

R = %L. (S1) (2.43)
= % (cgs) (2.44)

where u and L are a characteristic speed and length scale, respectively.

2.6.7 Plasma Beta

For an MHD plasma, the plasma beta (8) is defined as the ratio of thermo-
dynamic pressure to magnetic pressure:

_ p
=i O (2:45)
D

=560 (cgs) (2.46)



3

Discharge Plasmas and
Elementary Processes

A Plasma Formulary for Physics, Technology and Astrophysics Declan Diver
Copyright © 2001 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN 3-527-40294-2



3.1 NOTATION

SYMBOL MEANING REF
B magnetic flux density
d electrode separation
dg planar sheath extent
D, ambipolar diffusion coefficient (3.42)
D, diffusion coefficient for species s (3.32)
E electric field
i primary electron current at cathode (3.56)
iq electron current at anode (3.56)
Ju ion current density (3.9)
mg mass of particle of species s
Ng number density of particles of species s
N, total number of electrons (3.55)
Neo total number of electrons emitted at cathode (3.55)
» neutral gas pressure (3.60)
Qs charge carried by particle of species s
] label defining species: i (ion), e (electron), n (neutral)
T temperature of gas of species s
up ion speed at the plasma-sheath edge (3.4)
U ion speed in the sheath (3.3)
\4 voltage
Vo breakdown voltage (3.73)
Vomin ~ minimum breakdown voltage (3.77)
o first Townsend ionization coefficient (3.56)
Yr second Townsend ionization coefficient (3.67)
T, flux of particles of species s (3.28)
é plasma skin depth (2.20)
€0 vacuum permittivity
Ap Debye length (2.17)
Amfp mean free path (2.19)
s mobility of particle of species s (2.34)
s mobility tensor for species s in a magnetised plasma, (2.36)
v non-specific collision frequency
Ves collision frequency of species s (in Hz)
Ogc collision cross-section (2.29)
w frequency of electromagnetic wave
Wes circular cyclotron frequency of species s (2.7)
wp circular plasma, frequency (2.6)
Wps circular plasma frequency of species s (2.1)
24

A Plasma Formulary for Physics, Technology and Astrophysics Declan Diver
Copyright © 2001 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN 3-527-40294-2



PLASMA SHEATH 25
3.2 PLASMA SHEATH

In very general terms, a plasma bounded by an absorbing wall loses mobile
electrons to the wall, and shields itself from the resulting electric field by the
creation of a positive space charge region, termed the sheath.

3.2.1 Planar Sheath Equation

The standard model of a free-fall stationary planar sheath is presented, ob-
serving the following assumptions:

o ions are cold
e electrons obey Boltzmann statistics in a 1-dimensional model

o the sheath extent is small enough for the sheath to be collisionless,
though the plasma need not be

In this model, the equilibrium electron and ion number densities, and the ion
speed, as a function of sheath distance z, are given by:

ne(z) = noexp e¢/ (ksT.) (3-1)
_ 2ed -1/2
ni(z) = no (1 - miug) (3.2)
1/2
u,(z) = (u% - %4’) (3.3)
up = ui(z =0) (3.4)

The non-linear equation for the structure of the electric potential across the
sheath is

9 ~1/2
2ol (22)-(-2) "] @ es

~1/2
= dmeng [exp ( kfil‘e) - (1 - :7:33) ] (cgs) (3.6)

where we take z = 0 to be the sheath-plasma interface, at which ¢ and d¢/dz
are assumed to be zero.

3.2.1.1 Bohm Sheath Criterion Note that (3.5) has monotonic solutions for
the potential (avoiding trapped ions) only if

1/2
o > (%) @.7)
T
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which is equivalent to demanding that the ion number density falls more slowly
than the electron number density across the sheath, allowing the positive
space-charge shield to develop. This concept can be generalised as [77]

[ -y 2 0] . (38)

with x = —e¢/(kpTe). Note that (3.7) and (3.8) demand that the cold ions
are accelerated before entering the sheath region; this necessitates a so-called
presheath region in which the requisite acceleration mechanism is present.

Note that the Bohm criterion applies strictly only when the mean free path
for particles in the sheath is much greater than the sheath extent, so that the
sheath is collisionless (but the plasma needn’t necessarily be). It does not have
to be satisfied if the sheath is collisional, that is, if the local Debye length is
greater than the ion mean free path [77].

3.2.2 Child-Langmuir Law

The Child-Langmuir law gives the space-charge limited ion current density in
a planar sheath of width d:

4 % 1/2 ,3/2
Ji= - —_— 0 ST 3.9
—go () %5 o 39)
1 % 1/2 ¢3/2
=Q(E) e (3.10)
'8

The following restrictions on the validity of this result apply:

o sheath is collisionless

o the electron number density is ignored when solving (3.5)

e the ion current J; is constant across the sheath

o ep/(kpT,) > 1

o (3.9) strictly only applies close to the wall
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Assuming the Child-Langmuir law (3.9), we have:

dy = %nx\p (2,‘,,42") (3.11)
¢ = —¢o(x/ds)"? (3.12)
ni = ‘;ie"g—g (dis)-w (SD) (3.14)
ni = f—:% (d%) e (cgs) (3.15)

3.2.3 Collisional Sheaths

If the collisional scale-length for ions is less than the sheath extent d, then
the form of the sheath potential is modified [58]:

_ 3(3 K (enoug)?/® /

$=-3 (260) [2€Amtp,i/ (wm;)]/3 */ (8D (3.16)
__3 2/3 (enouo)*/® 5/3
= 5(67:) “[Qe pWy T 72% (cgs) (3.17)

This can be rearranged to yield the collisional form of the Child-Langmuir
law:

2/5 3/2 2e\ . 1/2
J,:5<5) eo(e?rT“f"”) 6ol*/2d;%/2 (ST) (3.18)
2 (5\*? [ 2eAutpi) _

where Amgp,i is assumed independent of ion speed, and ¢y is the potential at
the electrode.

Note that (3.16), (3.18) depend implicitly on defining a plasma-sheath edge.
A piecewise continuous modelling approach to accommodating a Bohm crite-
rion with a collisional sheath is used in [39], allowing a plasma-sheath edge to
be defined. However a matched-asymptotic expansion approach to modelling
the plasma and sheath [35] suggests that there is a transition layer joining
the plasma to the free-fall sheath: the transition region scales as )\%/g , where
Apo is the debye length evaluated at the central electron density in the dis-
charge, and the potential across the transition region varies as )\gg . The
existence of such a transition region suggests that the identification of a sharp
plasma-sheath boundary may be problematical.
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3.3 DOUBLE-LAYER

An analogous phenomenon to the wall sheath is the double-layer (DL), which
is an isolated electrostatic structure in a current-carrying plasma, and which
though overall charge neutral, sustains a significant potential difference. The
DL acts as a potential barrier to certain particles, for which the DL potential
is too great for them to overcome, and they are reflected. Conversely, particles
which do manage to cross are accelerated; those accelerated to higher energies
can emerge from the DL as a particle beam.

The DL structure is determined self-consistently from the disposition of
charged particles in an electric field, usually requiring populations of reflected
and accelerated particles. The current is carried by the free (non-reflected
traversing) particles, mainly by electrons in the non-relativistic description,
but evenly by ions and electrons for the relativistic DL.

The mathematical description [74] of the DL depends upon Poisson’s equa-
tion:

i; 'ie

[(23471)1. - ¢)/mi]1/2 - (2€¢/me)l/2

—eod” = (8D (3.20)

7 i

Te
T T [@edo = )l egimoy (B

(3.21)

subject to ¢(0) = ¢or, #(d) = 0, where ¢y, is the potential drop in the double
layer, i, is the current of species s, and d is the DL extent. Note that only
one species of ion is considered here. The solution to (3.20) is a variation of
the Child-Langmuir law:

1/2
(ie+ii)d2=geoco (%) [1+(m,/m,-)1/2] o2 (ST) (3.22)

= 9—17;00 (%)1/2 [1 + (me/mi)lﬂ} &2 (s1) (3.23)

Co ~ 1.867 (3.24)

for which

fe _ (E-) v (3.25)

iy Me
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The above results are for a non-relativisitic DL. The relativistic equivalents
are

1/2
(ie +1:)d? » yn2eochps [1 + (ﬂ) ] Mec® L egpr K mic®  (SI)

2m;c?

1/2
(e + 1:)d® ~ Fegou {1 + ( ;;;’:"22) ] mec? K edo. K mic®  (cgs)

4egce

(ie + ii)dz ~ e d)gL e, > mic? (ST)
{3
. . ce
(G +i5)d? ~ md)ﬁ edp, > mict  (cgs)
2
(3.26)
The extension to the Langmuir current condition (3.25) is
fe _ 2mic? + edpy | /2 3.27)
i\ 2mec? + edpr :

These static analytical DL solutions are only special simple cases; the general
solution has to be numerical. Consult [74] for a comprehensive review of more
realistic approaches.

3.4 DIFFUSION PARAMETERS

3.4.1 Free Diffusion
For a neutral gas, the flux Ty of particles of species s is given by [18, 64]
T, = -V (ns (Lvives)) (3.28)
= =10} Amtp,s Vs (3.29)

where (---) denotes the average value, v, is the particle speed, v, is the
particle collision frequency, Amsp,s is the mean free path, and n, the number
density. The diffusion equation can be written in the form

ng
ot

assuming no sources or sinks of particles. For parameters that are constant
in space, (3.30) can be written as [18]

+V-T,=0 (3.30)

d
;’ =D,V’n, (3.31)
D, = 8T (3.32)

MsVes
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where m, is the mass of a particle of species s. Written in this form, (3.31)
and (3.32) are referred to as Fick’s Law of diffusion.

3.4.2 Mobility

The mobility p, of a charged particle is defined in terms of the drift speed
produced by an applied electric field. Hence [18]
lgs|

= lectric fiel 3.33
s e dc electric field (3.33)

= *Jq—"l— ac electric field (3.34)
Mg (Vcs + lw)
where the particle has charge ¢, and mass m,, and where v, is the collision
frequency. In the ac-case, the applied electric field has frequency w. Note that
since

Ves = (u)/Amip from (2.12) (3.35)
= (U)np0se from (2.19) (3.36)
then
fy = m——snlqalw W (3.37)
1
xo (3.38)

where p = npkpTy is the ideal gas law for the neutral gas, number density n,
and temperature T,;. Consequently,

E
Vds X “1; (3,39)
where vy, is the drift speed of particles of species s.
See also Section 2.5.4.

3.4.3 Ambipolar Diffusion

Where the number density of charged particles is sufficiently large (n. =
n; ~ 104m~% ~ 10%cm™3) that their mutual coulomb field affects their
transport, the free-diffusion assumptions of Fick’s Law ((3.31) and (3.30))
must be modified. In such circumstances the particle flux I'; may be written
in terms of the diffusion and mobility parameters:

T, =+u,n,E — Dy,Vn, (3.40)
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where p, is the particle mobility ((3.33) and (3.34)), n, the number density,
E the electric field, and D, the diffusion coefficient (3.32).

The common flux T' of ions and electrons in the presence of an electric field
can be written in a form analogous to (3.31), defining the ambipolar diffusion
coefficient D,:

T'=D,Vn (3.41)
.D. D;
D, = —HiZe + peDi (3.42)
Wi T pre
T,
~Di[1+ 2 .
D; ( + Ty) (3.43)

where T, and T are the electron and neutral gas temperatures, respectively.
The electric field E; of the space-charge which results from the faster am-
bipolar diffusion of electrons can be quantified as

D, — D; Vng

E,=—
Het+ i g

(3.44)

For more than one species of positive ion, the ambipolar diffusion coefficients
of the ions are unchanged, but the electron diffusion is altered [18]:

Dgj ~ Dy; (1 + g‘—f) i=12,...,N; (3.45)
9
1 N,
Dae ~ - > niiDy (3.46)
¢ j=1

where N; is the total number of ion species present.
For a gas containing negative ions,

T,
D,y ~ D; (1 + 1—,’) (3.47)
g
ni_\ D;D;_ T,
N -D; ([=-1 R
D, 2 (1 + . ) D, D, (Tg ) (3.48)
i Te ni_ Te
Dy =~ (1 + n—e) Dy (1 + ,‘,-,—g) + n—eD'_ (,‘,—,g - 1) (3.49)

where D, is the ambipolar diffusion coefficient for the positive and negative
ions, respectively, and Dy, is that for electrons, and subscript i— refers to the
negative ions.

3.4.3.1 Restrictions
e n; =ne = n is assumed

e (3.42) assumes a steady state, that is, no time evolution
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o the mobility and diffusion coefficients are assumed to be constant in
space, and independent of energy

e no particle sources or sinks are present

e electrons and ions move at a common speed: v; = v, = v

3.4.4 Ambipolar Diffusion in a Magnetic Field

Here the particle flux T, is given by
T, = tnypus E & (T X B) — D,Vn, (3.50)

Particle motion can be split into two cases: parallel to B, and perpendicular
to B. For the parallel case, the mobility and diffusion are unaffected by the
magnetic field:

1‘”, = iu,naE” - DsVun, (351)

where p, and D, are as before, and V) denotes the derivative along the
direction of B.

The motion perpendicular to B is affected, with the perpendicular flux
given by

Ty =%pisnErL —D1,Vin, (3.52)
where
I"u
His = 1+ Lu'2 / (353)
D
D,,= s (3.54)

L+ wiy Vs

3.4.4.1 Restrictions The same restrictions apply here as in Section 3.4.3.1,
with the additional constraint that the magnetic field is assumed uniform in
space.

3.5 IONIZATION

3.5.1 Townsend Breakdown

An electric field E applied to a gas with some seed ionization already present
(from cosmic rays, for example) will yield a current which increases with
electric field, provided the electric field imparts to electrons energies higher
than the ionization potential of the gas.
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3.5.1.1 Townsend’s First lonization Coefficient Townsend’s formula for this
process is [18, 45, 59

N, = Nye™=® (3.55)

where N, is the number of electrons at a distance z from the cathode, N,q
is the number of electrons emitted at the cathode, and ar is the number of
ionizing collisions made per unit length, (equivalently, the number of ion-
pairs produced per electron per unit drift length) known as Townsend’s first
ionization coefficient. Note that o is a function of the gas composition.

If the electrode separation is d, then the current at the anode due solely
to electron creation via the first Townsend ionization coefficient, neglecting
diffusion losses, is

i = ige®™d (3.56)

where g is the primary electron current at the cathode, and where %, — g is
the positive ion current at the cathode. The quantity é, /i is known as the
multiplication factor.

An alternative approach is to consider the number of ionizing collisions per
unit voltage difference [18]:

N, = Neg exp[ii(V - V)] (3.57)
v

7= 1/_—170 /0 n(V')dv’ (3.58)

n=2 (3.59)

where V is the voltage, and V; is the threshold voltage for the effect to be
seen.

Since the mean distance between electron-neutral collisions i8 Amsp, each
electron drifting in an electric field must gain energy eEAms, after each colli-
sion. Since ay is the number of ionizing collisions per unit length, then it is
reasonable to assume that a; must be a function of the neutral gas pressure
(number of encounters per unit length) and energy gain per collision. Hence

9‘1-71 =F (%) (3.60)
= Ciexp (—Cz %) (3.61)

for some function F; the form (3.61) is due to Townsend, with Cy, C constants
which depend on the neutral gas. Values of C; and C, for various gases are
given in Table 3.2 [79], with curves of the first ionization coefficient based on
(3.61) shown for some of these gases in Figure 3.1. The Townsend formula
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Table 3.2 The values of C; and C; for the analytical model of the first Townsend
ionization coefficient, given in (3.61). Note that the first two data columns are derived
from the last two, using the unit conversions 1cm = 0.01m, and 1torr = 1mm-Hg =
133.3224Pa [96]. The data for gases marked with * may be too high by up to a factor
2 [79]. These data are valid generally in the range C2/2 < E/p < 3Ch, but see also
the noble gas model ((3.62) and Table 3.3).

G'dS Cl Cz Cl Cz
(m™'Pa™!) (Vm~'Pa7!) || (em~'torr™!) (V cm’torr™?)
Hy 7.95 263 10.6 350
Ny 9.0 256 10.6 342
CO*, 15 350 20 466
Air 9.15 274 12.2 365
H,0 9.68 217 12.9 289
HCI* 18.8 285 25 380
Hg 15 278 20 370
He 1.37 37.5 1.82 50
Ne 3 5 4 100
Ar 9.0 150 12 200
Kr 10.9 165 14.5 220
Xe 16.7 233 22.2 310

(3.61) can be extended to better account for the noble gases [94]:

1
or . (P\Z
o =Diex [ D, (%) ] (3.62)
where the square-root dependence is empirical. The appropriate coefficients
for this model are given in Table 3.3.

The standard Townsend formula (3.61) can be extended to incorporate the
effect of a magnetic field [18]:

1
2 2 2 2\ 2
51; — Vey + Wey _ 2 Veg + Wiy
5o () e [ orp (3 69
3.5.1.2 Stoletow Point It is known experimentally that there is a pressure

for which the multiplication at fixed voltage is a maximum, that is,

dary
B =0 (3.64)
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Table 3.3 The values of D1 and D, for the analytical model of the first Townsend
ionization coefficient for noble gases, given in (3.62)[94]. Note that the first two data
columns are derived from the last two, using the unit conversions 1¢cm = 0.01m, and
1torr = 1mm-Hg = 133.3224Pa [96]. The uncertainty in these data is approximately
7%.

Gas Dy D, D D,
(m™'Pa~!) (V2 m™Y/2Pa=1/2) || (ecm™'torr™!) (V2 cm~!/?torr1/?)

He 33 12.1 44 14.0

Ne 6.2 14.7 8.2 17.0

Ar 21.92 23.01 29.22 26.64

Kr 26.76 24.43 35.69 28.21

Xe 48.98 31.25 65.30 36.08

—
Hydrogen

0 200 00 600 800 1000
e

Fig. 3.1 Curves of a/p (in m~*Pa~") as a function of E/p(in Vm~'Pa~") for various
different gases, using the formula (3.61) with parameters derived from Table 3.2. The
data for noble gases are shown in Figures 3.2 and 3.3.



36 DISCHARGE PLASMAS AND ELEMENTARY PROCESSES

22 T T

op
~

08 |
os | He® R

04t p

0 50 100 150 200
Efp

Fig. 3.2 Curves of a:/p (in m~*Pa~!) as a function of E/p(in Vm~!Pa~?) for He
and Ne, comparing (a) the Townsend formula (3.61), using Table 3.2 with (b) the
empirical formula (3.62) using the coefficients in Table 3.3 and the validity ranges
quoted in [94].
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0 100 200 300 400 500 600 700 800 900

Fig. 3.3 Curves of ar/p (in m~'Pa~") as a function of E/p(in Vm~'Pa~!) for Ar,
Kr and Xe, comparing (a) the Townsend formula (3.61), using Table 3.2 with (b) the
empirical formula (3.62) using the coefficients in Table 3.3 and the validity ranges
quoted in [94].
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which yields

& _Ep (E) (3.65)

P p P

Equation (3.65) defines the Stoletow point for a gas [45], which corresponds
to the point on a curve of ar/p versus E/p at which the tangent to the curve
passes through zero.

When the formula (3.61) is used, the Stoletow point occurs at E/p = C,.
The Stoletow point is the minimum of the Paschen breakdown curve for a gas
(see Section 3.5.5).

3.5.1.3 Restrictions Note that ar/p = F(E/p) is only valid if no pressure
dependent ionization processes are operative [64]

3.5.2 Alfvén lonization

A neutral gas in relative motion with respect to a magnetised plasma will be
quickly ionized if the relative speed exceeds the Alfvén critical speed v., given
by [7, 55, 65)

Ve = (@)% (3.66)

Mn

where ¢; and m, are respectively the ionization potential and mass of the
neutral gas particles, and the plasma and neutral gas have the same chemical
composition. The plasma is assumed to be held by the magnetic field, with
the flow of neutral atoms producing collisions with the plasma ions. The ions
are displaced from their equilibrium positions, producing a significant charge
imbalance which cannot be rectified rapidly because of the magnetic field in-
hibiting electron transport. Hence a local sheath is formed which ionizes the
advancing neutral gas very efficiently. Such an effect has been used experi-
mentally to ionize neutral gases in cylindrical geometry via azimuthally driven
plasmas [34], and generalized to describe astrophysical flows and shocks [65).
Further details are given in Section 8.5.

3.5.3 Secondary Electron Emission

As the electrode separation d increases whilst maintaining a uniform electric
field E, discharge currents greater than that predicted by (3.56) occur. This
is attributed to the creation of additional charged particles over and above
those generated by primary Townsend ionization.

3.5.3.1 Townsend'’s Second lonization Coefficient 'Townsend’s model for this
process involves a second ionization coefficient y; to account for the secondary
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emission of electrons by positive ion bombardment of the cathode, leading to a
greater electron population, enhanced ionization, and therefore a larger anode
current (neglecting diffusion losses)[45, 59, 60, 64, 79)

eord

=0T md o) el =T)

(3.67)
The current is increased by the factor (1 — yz(e®? — 1))~1. Note that the
enhanced current can be the result of processes other than positive ion bom-
bardment of the cathode; for example, photoemission at the cathode from
excited atoms will yield additional electrons, but without the accompanying
positive ions. The electron multiplication described by ~; and (3.67) applies
to all secondary emission effects, although it is possible to distinguish between
these processes in a generalised treatment (see Sections 3.5.3.2 and 3.5.3.3).
If the secondary electrons are produced solely by positive ion bombardment
of the cathode, then «y; is the number of secondary electrons produced per
incident positive ion. Note that 7 is a function of the electrode composition.

3.5.3.2 Effect of Electron Attachment An electron colliding with a neutral
atom can produce a negative ion in a process termed electron attachment.
Since a collision of this type does not produce a further electron via ionization,
then it must reduce the ionization rate in the discharge. This can be accounted
for in modifying the Townsend model, by defining 8. to be the number of
attachments per electron per unit length of drift, in analogy with a;. Then
the effective first ionization coefficient is ar — B¢, with the anode current now
given by [45]

apeler=Pad _ g
ar — e — aT’YT{e(aT_ﬂ‘)d -1}

ia =0 (3.68)

3.5.3.3 Generalized Treatment of Secondary Processes A generalized model
of anode current i, produced as a result of a range of secondary effects is
given by [60]

io(1 — K/ oy )elor—r)d
[1— k(1 = dd)/ar — (elr=md —1)(y2 + &/ (ar — k) + £(1 — 6d) /)]
(3.69)

lg =

where:

ar is Townsend’s first ionization coefficient;

Yz is Townsend’s second ionization coefficient;

dnedz  is the number of photoelectrons emitted from the cathode
as a result of the photons produced by n. electrons travel-
ling a distance dz along the electric field;

kn;dz  is the number of electrons produced collisionally by n; pos-
itive ions travelling a distance dz along the electric field.
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3.5.4 Townsend Breakdown Criterion

The Townsend current (3.67) becomes infinite when
e d =y + 1 (3.70)

known as the breakdown criterion, or the sparking criterion. When satisfied,
(3.70) defines the condition where the number of secondary electrons produced
by e®? positive ions or photons exceeds (by unity) the number of electrons
emitted from the cathode as a result of a single ion from a single primary
electron. Thus (3.70) is the transition to a self-sustaining discharge, one
which is independent of the original ionization source.

Extending the result to include electron attachment yields

ar — B

T G (e@ P _ 1)

(3.71)

50 that 7, has to be higher for breakdown (or d, o greater for fixed 7).

3.5.5 Paschen Curve

Using the Townsend breakdown condition (3.70) together with the Townsend
primary ionization model (3.61) results in the relation [79]

Cipdexp (_ Czpd) —In (1 + i) (3.72)
Vi Tr

where the breakdown voltage V} is given by

Vo = Eyd (3.73)
in plane geometry. Hence

_ Czpd

Vi = o [ Cipd ] (3.74)
In(1+1/7)

= Vs (pd) (3.75)

which is a statement of Paschen’s law, that is, the breakdown voltage of a
gas depends only on pd (since C1, Cy and ~, are fixed for each gas; p and d
describe the experimental method).

Note that the minimum breakdown potential, Vj,min for a gas occurs at a
critical value of pd:

2.718 1
(b = “5=1n (1 + 7) (3.76)

T

Vo((pd)e) = Voymin < Vi(pd) (3.77)
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T

Ve/Vomin

pd/(pdc)

Fig. 3.4 The universal Paschen curve Y = X/(1 + log X) for the non-dimensional
variables Y = V;/ Vi min and X = (pd)/(pd)c

Vb,min 18 also known as the minimum sparking potential.
The functional dependence of V; on pd can be represented in a universal
Paschen curve, defined by [79]

Vi X
Vimin _ 1+InX (378)
= G”%— (3.79)

and shown in Figure 3.4. This curve has a characteristic minimum at X =1,
corresponding to the Stoletow point (3.65).

3.6 IONIZATION EQUILIBRIUM

3.6.1 Local Thermodynamic Equilibrium

A gas is in thermal equilibrium if the gas particles are distributed across all
possible states according to Boltzmann statistics, and the radiation energy
density corresponding to all transitions is given by the black-body curve for
the system temperature.

A gas is in local thermodynamic equilibrium (LTE) if it is sufficiently dense
for collisional transitions to dominate radiative transitions between all quan-
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tum states of the gas particles. This means that the distribution of states fol-
lows Boltzmann statistics, but the radiation from such an ensemble of states
is not necessarily thermal [46].

3.6.2 Saha Equation

Denoting the number density of atoms in the jth ionization state by n; as
a result of interacting with a co-existing population n. electrons, then the
relative population in the different ionization states in LTE is given by the
Saha equation:
Tellj+1 _ 2 gin 2 kpT)3/2¢=6:/(knT) 3.80
o = L em ks T) % (3.80)
where g; is the degeneracy of the jth excited state, £; is the energy difference
between the states j and 7+ 1, and T is the ensemble temperature.
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4.1 NOTATION

SYMBOL MEANING REF

A magnetic vector potential
B magnetic flux density
c speed of light in vacuo
E electric field
E; incident electric field
E, scattered electric field
H magnetic intensity
Im Bessel function of 1st kind, order m
k scattering wave vector
k; wave vector of incident electromagnetic wave
ks wave vector of scattered electromagnetic wave
kp Boltzmann constant
K, modified Bessel function, order m

mg mass of particle of species s
Ng number density of particles of species s
P power
4,9s charge on a particle (of species s)
T position vector from origin to field point (4.1)
79 position vector from origin to source point (4.1)
Te classical electron radius (4.72)
R position vector from source to field point (4.1)
R unit vector in R direction
s label defining species: i (ion), e (electron), n (neutral)
Te electron temperature
e normalised wavenumber, = kAp (4.64)
v normalised particle velocity, = v/c
Yo relativistic factor, = (1 — g2)~1/2
€ ratio of photon energy to scatterer energy, = hw;/(mc?)
€0 vacuum permittivity
Ap debye length (2.17)
{ho vacuum permeability
II polarization operator (4.67)
Oe Thomson scattering cross-section for single electron (4.69)
OKN Klein-Nishina scattering cross-section (4.100)
Tsc scattering cross-section (2.29)
w frequency of electromagnetic wave
Weeo circular cyclotron frequency of rest electron

Q solid angle
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4.2 RADIATION FROM A MOVING POINT CHARGE

The point charge, value ¢, has position and velocity ro and vg = 7y respec-
tively; 7o is termed the source point. Observations of the field pattern arising
from the point charge dynamics are made at the stationary field point 7. The
radius vector from the source to the field point is denoted R, defined by

R=7r—-19 (4.1)

with the appropriate unit vector R = R/R. A detailed analysis of the
treatment of the radiation field from an accelerated charge can be found in
[12, 15, 24, 46, 47, 93].

4.2.1 Liénard-Wiechert Potentials

The Liénard-Wiechert potentials describe the radiation field from a moving
point charge. The electromagnetic field produced at the field point r at time
t by the particle motion can be derived from the Liénard-Wiechert potentials,

o(r,t) = ﬁ [é] ., @ (“.2)
=q [%l o (cgs) (4.3)

A(r,t) = %"f- [:—;i] e (4.4)
= % [:_;] ECS (.5)

where ¢ is the electric potential, A is the magnetic vector potential, k£ =
1~ R-vo/(cR) and the notation [-- -] denotes that the expression within
the brackets has to be evaluated at the retarded time #', where

t' =t — [Rlret/c=t— R(t')/c (4.6)

since the field pattern detected at time ¢ is generated by the charge dynamics
at an earlier, retarded time, allowing for the electromagnetic disturbance to
propagate.

4.2.2 Electric and Magnetic Fields of a Moving Charge

The electric field arising from the charged particle motion can be written in
the form [15, 24, 93]

A
E=@%[(R A ﬁu)+nx{(fzn3§u)xﬂu}] Sy @
ret

N e S T
ret
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The corresponding magnetic field H is given by

_ g i (R4 X
n-% [(1 0, bt c(gRﬂu)ﬂu] <[/ o0 @9
ret
[(1 ;3%2)ﬂu + KBy +c(’€1:Rﬂv)ﬂuj| X [R] vt (cgs) (4.10)
ret

Note that the expressions for the electric and magnetic field consist of two
terms: a near field term, proportional to [1/R?).; and a radiation term,
proportional to [1/R].e;. The near field term is essentially the instantaneous
Coulomb field of the point charge. If the acceleration is zero, so that the
charge is moving uniformly in a straight line, then only the near field term
exists, and we have

= 1400 RJR'Z"]M 5D (1)
—aa- ) (BB R (.12

) [ﬂ;}f‘] &) (413
=q1-5) _%- (cgs) (4.19)

4.2.3 Power Radiated by an Accelerating Point Charge

Considering only the radiation term, the power dP(#')/df} radiated per unit
solid angle at the source point (that is, at the position of the charge) is given
by

) quag RxB-8) <A ) @)
=R r-pyx Bl ) (10)
4.2.3.1 Non-Relativistic Where 8, < 1,and so x — 1,
dzg') ~ %mﬂo (SD (4.17)
~ Z 103 sin?9 (cgs) (4.18)
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where 6 is the angle between o and R. Integrating over all angles yields the
Larmor formula for the total power P radiated by a classical particle,

_ 0%

P= 2t (8] (4.19)
_ 2¢°0
=33 (cgs) (4.20)

The radiation pattern is shown in Figure 4.1.

4.2.3.2 Relativistic, B, ﬁu collinear Where the velocity and acceleration are
collinear,
dP(¥)  ¢*42 sin? 6
dQ  16m2¢pc (1 — B, cosh)?
¢?42  sin’6
=R TR ()
4me (1 — By cosb)

(1) (4.21)

(4.22)

where 6 is the angle between the velocity vector and the position vector of
the field point. The total power radiated is given by

¢ 6
P= Grene L7 (S) (4.23)
2> G
= %(1‘[_9—52)3 (cgs) (4.24)

The radiation pattern is shown in Figure 4.2, for the case 8, = 0.4. Notice
that the pattern is distorted towards the forward direction, with the radiation
cone having an angular width of ~ 1/,.

4.2.3.3 Relativistic, By, ﬁ.,, orthogonal The particular case of acceleration
orthogonal to velocity is relevant to the motion around a magnetic field line.
Taking 6 to be the angle between the instantaneous 8, and R projected onto
the orbital plane defined by B, and B, (as before), and ¢ the angle between
R and the orbital plane, then the pattern of radiation is given by [49]

dP ¢*62 1 _ 1-32 - )
a0~ 16n%¢oc (1 — By cos ) [l (1= B, cosb)? sin® 6 cos® ¢|  (SI)

(4.25)

_ a8 1 -6
= e (1 - B, cosf)® [ " (1= B, cosb)? sin® f cos® ¢] (cgs)

(4.26)
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v B 1

Fig. 4.1 The radiation pattern for a non-relativistic point charge located at (0,0).
The left-hand plot shows the cross-section of the pattern in the plane containing the
velocity vector and the position vector of the observer. A full 3-D representation of
the radiation field is shown on the right.

The total power radiated is then

2

N X

67:‘1600 a ﬂuﬂz)z (SI) (4.27)
;2

23‘16 a ﬁ”ﬂz)z (cgs) (4.28)

The radiation pattern for a point particle with 8, = 0.7 is shown in Figure 4.3.
Once again radiation is beamed in the direction of 3,, with the opening angle
of the radiation cone ~ 1/v,. Note the subsidiary radiation maximum at an
angle to the main one; as 8, — 1 this additional node becomes less important.
The radiation pattern does not go to zero along the velocity vector, as in the
collinear case. For more detailed discussion of the geometry, see [49].

4.2.3.4 Relativistic, B, ﬁ,, general The general case has a simple formula
for the total power radiated.

- ¢ 1 L BB

= Breoc (1 - B2)2 (ﬂ" o ) D (4.29)
2¢% 1 v B,

=% m <ﬁ" +& iag) ) (cgs) (4.30)

Detailed pictures of the general radiation field can be found in [93].
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o 1 2

Fig. 4.2 The radiation pattern for a 3, = 0.4 point charge located at (0,0), in the
case of collinear velocity and acceleration. The left-hand plot shows the cross-section
of the pattern in the plane containing the velocity vector and the position vector of
the observer. Notice that the radiation pattern is now swept forward, pointing in the
direction of the particle motion, which is from left to right along the horizontal axis.
A full 3-D representation of the radiation field is shown on the right.

] S~

6

0 5 0 i 20 s % 3 w

Fig. 4.3 The radiation pattern for a 8, = 0.7 point charge located at (0,0), in the case
of orthogonal velocity and acceleration. The left-hand plot shows the cross-section of
the pattern in the orbital plane containing the velocity vector and the acceleration
vector, where the velocity is directed along the horizontal axis, pointing towards the
right. Notice that the radiation pattern is once more swept forward, pointing in the
direction of the particle motion but without a zero in the direction of motion. Note
also the small subsidiary maximum. A full 3-D representation of the radiation field is
shown on the right, viewed from slightly behind the particle to show the subsidiary
maximum.
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4.2.4 Frequency Spectrum of Radiation from an Accelerating Charge

The energy distribution in frequency space per unit solid angle, dW/dQ of
the radiation from an accelerated point charge is expressed as
daw © 2w
— = e 4.31
dw o dQdw (4.31)

where

deW(w)  wq®
dQdw ~ 167m2epc

‘ / ” exp [iw(t' —Bro(t) /c)] [1’2 x (1’2 x ﬂ)] dt’r (s1)

- (4.32)
- %‘.Icf x
2

‘/m exp |iw(t' — R - ro(t')/c)] [i% X (fl X ﬂ,,)] dt" (cgs)
o (4.33)

4.3 CYCLOTRON AND SYNCHROTRON RADIATION

An electron undergoing cyclotron or Larmor orbits at a source point will pro-
duce electromagnetic radiation at the distant field point. This radiation will
appear at characteristic frequencies determined by the kinetic energy of the
electron, and the magnitude of the magnetic field at the source. Qualitatively,
the nature of the radiation may be classified as follows:

low energy, ‘classical’ electron line emission at the fundamental
electron cyclotron frequency

moderate energy relativistic elec- harmonics of the fundamental occur
tron within an emission envelope

high energy, ultra relativistic smooth continuum emission across a
electron wide frequency range, termed syn-
chrotron emission

Assume that the uniform magnetic field of magnitude B lies along the z-axis,
and that the distant observer’s field point lies in the z, 2-plane, so that

R =% sin6 + % cosf (4.34)
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Take the electron’s position and velocity vectors to be

roft!) = P [x cos(ueet!) + 9 sin(weet))] + 3y (4.35)
By = B [k cos(weet’) + § sin(weet')] + 2 By (4.36)
= #g

where we. is the cyclotron frequency for electrons, given by

wee = eB/(1omeo)  (SI) (4.37)
= eB/(vmeoc) (cgs) (4.38)
= Weeo/ Yo (4.39)

and where 8, = v/c, v, = (1 — 82)"1/2 are the usual relativistic parameters.
Note that (4.35) and (4.36) assume that the electron orbit is unaffected by
radiation losses.
Radiation at the field point is detected at frequencies w = wy, given by
[15, 24, 46, 47]

MWee

Wm = T———ﬂ"—cos—O (4.40)
(1-p1 - g
= cheo (4~41)

where m =1,2,....

Restrictions

e Unless otherwise stated, it is assumed that there is no radiation-reaction
on the particle, that is, the particle’s trajectory is unaffected by radia-
tion losses

o the accelerating magnetic field is homogeneous
o only the radiation term is used in the calculations

e the unit vector R from the source to the field point is taken to be in-
dependent of time, so that although the electron is moving with respect
to the observer, the effect of that motion on their relative orientation is
negligible

4.3.1 Spectral Power Density

The spectral power density, that is, the energy radiated per unit time per
unit frequency, at the field point is given by the Schott-Trubnikov formula
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[15, 46, 47):
dodt = % gl [(f(fffﬂ)z Tn(©) + ﬁiJ'mz(o]
x [;,,_cc;llo c):;; meel (s1) (4.42)
~ mi:? [(%)2 (&) + ﬂiJ:f(o]
x AL Byoooh)o e (o) (4.43)

1— f) cosf

where § is the delta-function: §(0) = 1, d(z) = 0 for all  # 0; Jp, is the
Bessel function of the first kind, of order m; J}, is the derivative of the Bessel
function with respect to its argument; and

_ wfBisinf
Wee
Note that (4.42) refers to the radiation detected at the field point; (4.42) needs

to be multiplied by 1 — ) cosf in order to find the energy loss at the particle
per unit solid angle per unit frequency.

13 (4.44)

4.3.2 Power in Each Harmonic

For each harmonic m, the radiated power P,, detected at the field point is
given by

— ezw?eo
™7 2megy2Bo(l — ﬂﬁ)3/2
- m2 [BL/a=p)?
x (mB1 5, (C¢) - —77 Jom(2mt)dt| (SI) (4.45)
v Jo
— Zezwgeo
281 (1 - B
) m2 [PL/Q=B)?
x |mpBLJyn(C) — —77 A Jom(2mt)dt| (cgs) (4.46)
v

where

2mB.

(= W (4.47)
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4.3.3 Total Radiated Power
The total radiated power P, at the field point due to the power in each
harmonic Py, is given by [15, 46, 47]

2, B
P, — ce0 L .
total Greoc 1= 72 (S1) (4.48)

262w:e0 ﬂi
3 1-p42

(cgs) (4.49)

43.4 3, < 1: Cyclotron Emission

In the non-relativistic limit, Pyy1/Pm ~ 82 and the bulk of the emission is
concentrated in the fundamental, the cyclotron emission line, giving the power
detected at the field point per unit solid angle as

dpP e wceOﬂJ_ 2
T LA (1) (8D (4.50)
2.2 g2
~ %ﬂi(l +cos?8) (cgs) (4.51)

showing that the power detected when the observer is aligned with the mag-
netic field direction is twice that detected in the orthogonal orientation. This
is because in the former, the electron motion is circular, and the resultant
radiation contains both linear polarizations. Observations made at 90° to the
magnetic field can only see one of the linear polarizations, and therefore detect
only half the power.

4.3.5 (3, ~ 1: Synchrotron Emission

For ultra-relativistic particles, the emission spectrum ceases to be discrete
lines but instead becomes a smooth continuum. It is more appropriate there-
fore to consider the total power per unit frequency interval,

ap
%= 3;:;’60‘;: / Kyja(e)da (ST) (4.52)
=v3e 2“7’m°: / Ksjs(@)dz  (cgs) (4.53)

where

W = 3y (4.54)
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The term w* can be expressed in terms of the local radius of curvature R, of
the relativistic electron [47]:

w' = gfysc/RC (4.55)

The total energy per unit frequency I(w) radiated by the ultra-relativistic
electron can then be expressed as

2 00
I(w) > \/54;::‘}* /w/w' Ky /3(z)dz (1) (4.56)
2
¥ ?4jreoc (;w‘)l/z exp(-w/w), w>w' (Sh (457)
e e / Ks/3(z)dz (cgs) (4.58)
~ %Tq (2) ep-wp). w>e @) @5

4.4 BREMSSTRAHLUNG

Plasma electrons moving in the electric field of plasma ions will also radiate,
due to the accompanying accelerations produced by unshielded ion fields.

The power P, radiated by a single electron moving in the field of a station-
ary ion, the latter carrying charge g;, is

ql
Pe= 96m3e3c3m2ry; (81) (4.60)
22!
=t __ 4.61
3EmaT, (cgs) (4.61)

where r¢; is the electron-ion separation distance, and m, the electron mass.
Integrating (4.60) over all electron encounters with this same ion, assuming
uniform electron number density, and then generalising to account for all ions,
yields the classical result

1
2,4 3
gietnine kpTe )\ 2
Py = —t—e—— .

tot 247rzegc3meh( Me ) (81) (4.62)

1
204y, 2
_ 8mgielnine (kaTe) (cgs) (4.63)

3cdmeh Me

where the singularity is removed by a minimum cut-off 7, ~ B(mkpT.)!/?
-aken as the de Broglie wave number.
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Restrictions Note that (4.62) is restricted to electron-ion collisions, and is a
classical calculation; the full quantum mechanical treatment yields a result
which is numerically very close.

4.5 RADIATION SCATTERING

A plane monochromatic electromagnetic wave incident on a free electron at
rest will accelerate it, producing radiation from the accelerated particle. There
are different theoretical treatments of the scattered radiation field, depending
on the particle or plasma parameter regimes, characterised by the following
quantities:

w; frequency of incident wave
ws frequency of detected scattered wave

w=w, —w; ‘scattering’ frequency

k; wave-vector of incident wave
ks wave-vector of detected scattered wave

k =ks; —k; ‘scattering’ wave-vector

a=kAp (4.64)
B, =v/c normalised particle velocity

hw;

€= et ratio of photon energy to scatterer energy

€
The following table shows which theoretical treatment is appropriate for pa-
rameter ranges.

a B8 € Scattering Description Section
- &1 <1 single particle, non-relativistic Thomson 4.69
>1 «1 <«1 incoherent, non-relativistic Thomson 4.5.2.1
>1 <1 <«1 incoherent, relativistic Thomson 45.2.2
$»1 <1 <1 coherent, relativistic Thomson 4.5.3
- <1 &1 single particle, relativistic, Compton 4.54
- <1 &1 singleparticle, relativistic, quantum Klein-  4.5.5

Nishina

If the incident photons have negligible energies compared to the rest mass of
the scatterer (that is iw < m,c?), this process is termed Thomson Scattering,
and the scattering particle trajectory can be prescribed under the influence
of the incident wave without accounting for the effect of the radiation on that
trajectory [46, 51, 82]
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For higher energy photons, the recoil of the scatterer must be accounted for;
the correct dynamics are described by the Compton Scattering Process. The
cross-section for the scattering of high-energy photons is the Klein-Nishina
Cross-Section, which correctly accounts for the relativistic and quantum-
mechanical aspects of the electron-photon interaction. The Klein-Nishina
formula reproduces the Thomson result at low photon energies.

4.5.1 Thomson Scattering

Here it is assumed in all circumstances that the incident photons have negli-
gible energy compared with the rest energy of the electron: fiw < mec?.

The detected radiation field at the distant observer can be evaluated under
different approximations, depending on whether the scattering is coherent
(kAp < 1) or incoherent (kAp > 1).

For kAp > 1, that is, incoherent scattering, there are two sub-cases: (i)
non-relativistic, where the dipole approximation, using the Larmor formula
(4.19) is adequate; and (i) relativistic, where the full relativistic form of the
radiation pattern is needed, usually for electrons at a temperature of ~ 1eV
and above.

For kAp < 1, that is, coherent scattering, a coherent sum must be formed
of the electric fields radiated by the participating electrons, leading to the
requirement for an accurate scattering form factor for coherent scattering
from discrete sites.

Following [46], the scattered electric field E, is given by

B, = ro[R (1 - 4251~ )70 x {
— (1= Bui)(1 — Bus)
— 8Bue(1 = Bua)
+3([1 = Buils - & + (8- — BuslBue)

_ﬂu([l _ﬂvi]§ ce— [l -3 ;]ﬂue)}]r

et

where: 7 = k/k is the unit vector in the propagation direction of the incident
wave; & = E;/F; is the unit vector in the direction of the incident electric
field; 8 = R is the unit vector in the direction of the scattered wave; and

ﬂvi = ﬂv -1 (4-65)
ﬁva = ﬂv ] (4.66)

The scattering geometry is shown in Figure 4.4.
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Scattering site—___

Incident plane
wave

o - Observer

o]

Fig. 4.4 Diagram showing the directions of the incident electromagnetic wave and the
scattered wave

For notational convenience, it is possible to write (4.65) in a compact form,

= [nn] aan

where II is a polarization operator for the radiation field, given by (4.7).
4.5.1.1 Thomson Scattering Cross-Section for single electron The scattering

cross-section o, for non-relativistic single electron radiation using only the
Larmor formula (4.19) for the radiated power, for which

-E;=3x(3xE;) (4.68)
yields [46, 50]
8 e? 2
e= g (47reomec2) 6D (69
sr [ e \*
= — 4.
r(mn) @ (4.10)
= %’rrf (4.71)
where 7, is the classical electron radius, defined by
¢ 472
e = Greomi® (8D (4.72)
¢ 73
=md (cgs) (4.73)

The differential Thomson scattering cross-section for a single isolated electron
is given by
doe
dQ

= 1r2(1 4 cos® §) (4.74)
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where @ is the angle between the direction of the incident wave and scattered
wave; see Figure 4.4. An alternative form is

do, .
d_f: =r2sin?¢ (4.75)
where ¢ is the angle between & and 3.
If the incident wave is monochromatic with frequency w; and wavevector
ki, then the scattered field from the single electron also has a single frequency
wy given by

ws = w; + c(ks — ki) - B (4.76)
i
= @)

where ¢f, is the electron’s velocity.

Restrictions

o fw; < mec?, so that negligible net momentum is imparted to the elec-
tron by the radiation field

o strictly, (4.71) and (4.74) apply only to single, non-relativistic electrons
subject to an electromagnetic wave of frequency w such that hw < m.c?

e there is no collective plasma effect

o the Larmor formula (4.19) is applicable

4.5.2 Incoherent Thomson Scattering from an Unmagnetized Plasma

4.5.2.1 Non-Relativistic Plasma, kAp > 1 In the limit kAp > 1 where
k is the wavenumber of the incident radiation then the phases at each scat-
tering site in the plasma can be taken as random, and the angular pattern
of total fraction of scattered radiation is simply the sum of the individual
contributions:

do
-dh’i =neir2(1+cos’f) (4.78)
Restrictions

e kAp > 1 ensuring that the ‘scattering’ wavelength is sufficiently small
that no coherence effects are present

o Fw; € mec? so that negligible net momentum is imparted to the electron
from the radiation
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® W;,Ws 3> wp,wee 80 that the incident and scattered frequencies are able
to propagate without being modified by plasma effects

e E; < Ep, where Ep is the Dreicer field, the threshold for the electron-
runaway instability (9.112)

o the plasma electron motion is non-relativistic

For a distribution f of electrons under the non-relativistic (dipole) approx-
imation,

dgfil, = [rg /V<Si>d'|9 x (8% é)lsz(w/k)/k] / ( /V (si)nedr) (4.79)
= 0. sin%(9) o (/8] (neh), (480)
where
o) = [ dvifo1m) (4.81)
me 1/2 mevz
e <27rkBTe) &P (_ szTk,) (4.82)

and where V is the scattering volume, w = w; —w; and k =k, — k;, (S;) is
the mean incident Poynting vector, and (4.82) holds for a Maxwellian electron
plasma. Note that (4.80) and (4.82) assume that the electron number density
is constant in the scattering volume.

4.5.2.2 Relativistic Plasma, kAp 3> 1 For electrons with energies in excess
of 1eV, relativistic terms become important and full expression for the radi-
ation term (4.65) must be used. The result here for the differential scattering
cross-section per unit frequency is

d?op
dQdw,

2 / |- |2’°—fa(k v —w)dv (4.83)

where k = k; — k; and kK = 1 — - B,. Note that (4.83) assumes that the
electron number density is constant in the scattering volume; the general case
requires the volume integration over the mean incident Poynting vector times
the number density as a normalisation (see (4.79)).

Restrictions The same restrictions apply as in the previous section, except
that here the prescription of the radiation field is not predicated on the Larmor
or dipole approximation.
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For the simpler case in which E; is perpendicular to both 3 and i, the
scattered power can be written as

1 Bui |
= S;
dew =7 / (Saddr |7 g,
There are various approximations to (4.84) appropriate to particular circum-
stances; see [71, 81] for details.

2
T A==y A A L) kdvy (489)

4.5.3 Coherent Thomson Scattering from an Unmagnetized Plasma

For kAp < 1 there is significant correlation between electrons necessitating a
coherent sum of scattering contributions from each particle. The total scat-
tered power spectrum can be expressed in the form

&P r2 P
dwdQ 27 A
where P; is the total incident power delivered to the volume V, A is the area

of V perpendicular to k, n is the electron number density in V, and Sy (k,w)
is the scattering form factor, which can be approximated as [46, 80]

— |- &*n.VSy(k,w) (4.85)

Syl ~ LT + (e M) (480)
a=1/a (4.87)
a=kAp (4.88)
b=2Z(1+ a2)_1 T’ (4.89)

w
&= m (4.90)
1/2
Vth,s = (’—c%]l) (4.91)
e
) = [ = FaP + e (4.92)
— —z? ‘ %
f(z) = 2ze /0 e dt (4.93)

Note that this approximation is only valid for one species of ion, carrying
charge Ze. Coherent scattering will arise from electron plasma waves, and
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electron

Fig 45 Diagram showing the directions of the incident photon, the scattered photon
and the electron recoil for a Compton scattering event.

ion-acoustic waves. The Salpeter approximation (4.86) to the form factor
simplifies the full expression to account for these two effects; note that it
breaks down for very large T, /T;.

4.5.4 Compton Scattering

For hw; & mec? then the incident radiation affects the evolution of the elec-
tron trajectory, with consequences for the scattered radiation field. From
Figure 4.5, energy and momentum conservation yields [49]

1 1 1—cos@

hor e = T (4.94)

or equivalently,

h
As— A = m—ec(l — cosb) (4.95)

where );, A\s; are the wavelengths of the incident and scattered radiation re-
spectively. The Compton shift is the quantity A, — A;. The Compton shift for
90° scattering is known as the Compton wavelength of the electron A.:

h

meC

Ae = =2.426x 1072m (4.96)

4.5.5 Klein-Nishina Cross-Section

The cross-section for Compton Scattering demands a relativistic, quantum
mechanical treatment of the electron interaction with the high-energy photon:
the Klein-Nishina cross-section. For highly energetic photons, the Thomson
cross-section for a single electron at rest has to be modified for the scattering
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of unpolarized incident radiation. The differential cross-section is given by
[76, 99]

dokn _ 3 oWy (W1 Ws oo
a0 2 of \w + i sin® @ (4.97)
1 3
27 [1 +e(l- cosﬁ)} (14 cos®6)
€2(1 — cosh)?
[l + (1+ cos?0){1+¢(1— cosﬁ)}] (4.98)
where
— Fuvs
€= pgye (4.99)
The total cross-section is then [96, 99]
2
_ e _ 2(et 1) 1.4 1
TKN = ¢ { [1 € In(2e+1) + 27 e 2(2¢ + 1)2 (4.100)

~0o(1— 26+ 5267 — 13.3¢° +32.7¢" — 77.7¢° +---), (e < §) (4.101)
wr2
~ T”(ln(Ze) +1) forex1 (4.102)

Note that oxn is the same as the Thomson cross section for € € 1, and also
for € £ 1, 8 = 0, but falls away rapidly with 6 for high energy photons.
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5.1 NOTATION

SYMBOL MEANING REF
B magnetic field
E electric field
f distribution function
fo equilibrium distribution function
fp Druyvesteyn distribution function (5.47)
M Maxwell-Boltzmann distribution function (5.9)
Fy fu expressed as a distribution of speeds  (5.10)
g energy distribution function (5.6)
9p energy probability function (5.7)
g Fokker-Planck potential (5.36)
H Fokker-Planck potential (5.37)
T ezt external current density (5.20),(5.22)
ks Boltzmann constant
Me electron mass
My neutral particle mass
n particle number density (5.1)
P pressure tensor (5.3)
q heat flux vector (5.5)
4 position vector
T, gas (neutral) temperature
u particle velocity
73 bulk velocity (5.2)
T gamma, function
€ energy density (5.4)
A argument in Coulomb logarithm (6.15)
Amfp,e  mean free path for electrons (2.19)
Amfp,g  mean free path for gas particles (2.19)
Ve electron-neutral collision frequency
3 energy loss factor (5.40)
Pext external charge density (5.19),(5.21)

5.2 FUNDAMENTALS

The distribution function f [19, 85] is the statistical [44] description of the
plasma or gas particles in the six-dimensional space (r,u) at a given time ¢.
Thus f(r,u,t)drdu is the number of particles at time ¢ having velocities in
the range w — u + du in the infinitesimal spatial volume r — r + dr.
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Bulk or fluid quantities are derived from the distribution function via mo-
ments of f in velocity space:

n(r,t) = / f(r,u,t)du number density (5.1)
a(r,t) = %/ufdu bulk velocity (5.2)
P(r,t)=m /(u —@)(u—u)fdu  pressure tensor (5.3)
m .5 .
€= g (u—a)’fdu energy density (5.4)
m 2 _
=3 /(u —@)*(u —@)fdu heat flux (5.5)

Two transformations of the general distribution function are also widely used,
particularly in experimental research. These are: the energy distribution
function (EDF) g(e), defined by

g(e)de = 4mu® f(u)du (5.6)

where € = mu?/2; and the energy probability function (EPF) g, (e), defined
by

—-1/2

gp(€) = €7 %g(e). (5.7)

5.3 BOLTZMANN EQUATION

The fundamental equation governing the evolution of the distribution function
is the Boltzmann equation:
Of [, 0 g 0f _ (ﬂ)
¢

S TU - ta
ot

ot or du (58)

where a is the acceleration experienced by the particles, and the term on the
right is the rate of change with respect to time of the distribution function
in response to collisions. This collision term is the key one which defines the
basic physics content in any modelling.

5.4 MAXWELLIAN DISTRIBUTION

The Boltzmann equation (5.8) has as a unique equilibrium solution, in the
absence of external fields, the Maxwell-Boltzmann distribution function, also
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known as the Maxwellian:

A useful variant of (5.9) is one which describes the distribution of speeds,
rather than vector velocities. Taking a non-streaming plasma, and integrating
(5.9) over all possible directions yields

3/2 2
_ m 2 o my
Fup(u) =4mn (—27rk3T) u? exp ( _—21rk3T) (5.10)

Using (5.10), two important quantities are associated with the Maxwellian
distribution: the most probable speed of a particle, corresponding to the
maximum of the distribution function, and defined by

2%kpT\'/?
up = (T) (5.11)
and the average speed,
172
a= (M) (5.12)
™m
The root-mean-square speed Urms is
T\ /2
Urms = (%B—) (5.13)
m
Note that the EDF for a Maxwellian takes the form
2 g ( € )
€)= ———=€/“exp| ——= 5.14
9(e) (kT P\ 5T (5.14)

5.4.0.1 Restrictions on the Maxwellian Distribution For a Maxwellian velocity
distribution to be a good approximation, there are restrictions on the spatial
dependence of the gas temperature T, and number density n, and also on the
magnitude of any electric field E which may be present. These are:

aT,
LY | (5.15)

B
,\cgan <n (5.16)
Eel, < tmu? (5.17)

where \cg, Ac are the gas and electron mean free paths, respectively (see
Section 2.19).
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5.5 VLASOV DESCRIPTION

The simplest form of (5.8) is where the explicit collision term is set to zero,
and the Lorentz force per unit mass is taken as the acceleration. The averaged
long-range nature of the collective plasma behaviour is incorporated by de-
manding that the electromagnetic field terms are those arising self-consistently
from the distribution of plasma particles. The whole system is called the
Vlasov description of a fully ionised plasma:

3 a
3{+ 6f+a 3:: 0 (5.18)

& /f,(r,u,t)du +P G By (5.19)
7 € €0
OF
ko qu / ufo(r,u,t)du + coo 7 + wodext = V x B(r,t) (5.20)
8

Equations (5.19) and (5.20) are in SI units; the equivalent forms in cgs units
are:

241rq, / fo(r,u, t)du + Anpexy, = V - E(r,t) (5.21)
8

47” q,,/uf,(r u,t)du + 1% + — in —Jext =V x B(r,t) (5.22)
8

J ezt and pegy represent the externally supplied current and charge density
respectively.

5.5.1 Equilibrium Solutions

Note that the Vlasov equation has many equilibrium solutions fg which sat-
isfy Ofs0/0t = 0. In the field-free case, the primary equilibrium solution is the
Maxwellian, given by (5.9). However, the neglect of an explicit collision term
in the Vlasov construction admits metastable equilibrium solutions, that is,
solutions which are stable on a timescale comparable with the collision time,
and which ultimately will relax to a Maxwellian. Such equilibria can be writ-
ten in general as arbitrary functions of the constants of the motion of a charged
particle in the electric and magnetic fields.

5511 Case ! E = B = 0 Here the constants of the motion are the
energy € = mu?/2 and the momentum p = mu. Hence any function fo =
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fo(us,uy, uz) is a metastable equilibrium function. Examples include [50]:

fo — 2(u41l-(')- ug) (523)
fo = uod(uz)d(uy)d(uZ — ud) (5.24)
1/2 2 _ 2
f=(gr)  Swdwes (-2E2t) 2s)

5512 Casell: E =0, B =2%Bo(r) Ifsubscript L denotes components
in the plane perpendicular to the magnetic field, then a simple equilibrium
solution is

fo = folur,uz) (5.26)

As in the previous case, the constants of the motion can also feature in the
construction, in particular, the adiabatic invariants associated with orbit the-
ory (see Section 6.4.2).

55.1.3 Caselll: E = —%8¢(x)/8xz,B =0 Constants of the motion here
are the y- and z-momenta, and the energy in the x-direction, mu?/2 + q¢(z).
Thus a possible equilibrium solution is

fo= fo(u} +2a¢(@)/m, uy, uz). (5.27)

5.5.1.4 Stability of Meta-Equilibria A stable equilibrium is one for which
the kinetic energy is a constant. It is sufficient for stability that fo be a
monotonically decreasing function of u2, that is,

Ofo

250 <o (5.28)
5u2

5.6 COLLISIONAL MODELLING

The collision term on the right-hand side of (5.8) can be modelled in sev-
eral different ways, each appropriate for a restricted range of physical signifi-
cance. Fundamental to all approaches is the Coulomb collision cross Section
0c(ug, ), defined in Section 2.5.1.

5.6.1 Boltzmann Collision Term

A distribution f of interacting particles can be modelled by considering the
reciprocal communication between particles in the assembly to be fundamen-
tally binary in nature. Hence the distribution function evolves according to
binary interactions which scatter a certain particle population out of a partic-
ular velocity space element, accompanied by other interactions which scatter
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different populations into that same velocity space element. Labelling the
‘scattered’ population with subscript 1, and the ‘scattering’ population with
subscript 2, Boltzmann constructed the collision term
of ’ ,
a¢) = ) F)f (ue) = F(u)f(u2)) | w1 —uz | oc(] w1 = uz |,6)ddu,
c
(5.29)

where € is the solid angle.

5.6.1.1 Restrictions The Boltzmann collision term is strictly only valid if:
e every interaction is a binary one;
o all interactions are uncorrelated;

o each interaction must take place over length scales and time scales much
less than any intrinsic variation in f.

5.6.2 Simplified Boltzmann Collision Term

An approximate form of (5.29) is

(%Jt‘)c: fo-fir,u,t) (5.30)

where a single time 7 between collisions is used to characterise the collisional
relaxation from the perturbed distribution f to the equilibrium solution fo.
This form is usually referred to as the Krook collision term.

5.6.21 Restrictions
e fo should be chosen to conserve particle number, e.g. alocal Maxwellian

e the collision operator (5.30) will drive f to a stationary equilibrium,
which may not be appropriate if momentum is to be conserved. If f
describes the evolution of electrons in the presence of stationary massive
scattering particles, then (5.30) is a good approximation. Such a model
is termed a Lorentz gas; since there is only self-interaction included in
(5.30), it applies best when there are mainly neutral species present.

5.6.3 Fokker-Planck

In order to account for the many weak interactions which characterise a fully
ionised plasma, the Fokker-Planck collision term defines a function v (u, Au)
which describes the probability that a particle with initial velocity u undergoes
many small-angle scattering interactions in a time At such that it acquires
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a velocity increment Au. Since 9 is independent of time, and therefore the
particle’s history, the scattering process is Markovian.
The formal statement of the collision term is then

(%%) R (f(Au» + 2 Judu a : (f(AuAuy)) (5.31)

where
(Au) = lim At / PAud(Au) (5.32)
(Audu) = lim - / $AuAud(Au) (5.33)

These two terms represent the two main ways in which an evolving distribution
function can change as a result of collisions: the velocity of a group of particles
may be changed as a result of many weak interactions, a process termed
dynamical friction and described by (5.32); the velocity of a group of particles
may be spread about in velocity space, a process termed velocity diffusion,
and quantified by (5.33).

5.6.4 Fokker-Planck Potentials

A formulation of the Fokker-Planck collision term using potential functions
[78, 98] can be written as follows:

(). ol () 2o () o
hy
where T, = (;!r qsc) InA, (5.35)

m and q are the mass and charge of the test particle; subscript sc denotes the
equivalent properties of the scatterer, and the potentials G and H are given
by

G= /fsc("sc) | u— g | duse (5.36)

_ M+ My Foc(Usc)
H= m lu——‘usc[dusc (537)
5.6.4.1 Restrictions The Fokker-Planck equation (5.31) is valid for any sys-
tem of particles in which collisions only produce small velocity changes, and
for which large velocity changes can only come about from the incremental
effect of many small such interactions. Hence this description is valid only if
the plasma parameter I';, is large, that is if there is a large number of charged
particles in a Debye sphere.
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5.7 DRIVEN SYSTEMS

Where there is significant time dependence in physical processes other than
collisional relaxation, such as electric fields present in the plasma which are
driven to change on timescales shorter than relaxation timescales, then these
must be accounted for in the kinetic description.

5.7.1 Generalized Distribution

The general form of the electron (speed) distribution function F in a neutral
gas, subjected to an oscillating electric field of frequency w and rms amplitude
Erms 18 [30, 64]:

F = Aexp(-W) (5.38)
- 2 e, 17
W= / mu [kBTy + Em du (5.39)

where T}, is the gas temperature, v is the collision frequency for elastic electron-
neutral collisions, and ¢ is the energy loss factor [85]:

U, —Uy) =  Average energy transfer per collision (5.40)

where U, is the electron energy, and U, is the average energy of the gas
molecules. The electron energy gain from collisions with neutral particles can
be written as
du,
dt
showing that if U, > U, then the electrons are heated by the gas (such as in
a shock), and vice-versa.
For elastic collisions in monatomic gases,
_ 2m,
8= e my

= —Ev.(U. — Uy) (5.41)

(5.42)

where m,, is the mass of a gas particle. For molecular gases, £ has a more com-
plicated form, since contributions from the internal energies of the molecule
have to be accounted for. An approximate expression for this latter case in
which the neutral particle has transitions between internal energy states is

-1
2MeVen | Viak mevdy
= — = 5.43
w-{g[m Rtz oo
where the sum is over all possible transitions k, v, is the collision frequency
for the kth transition, v is the electron speed, and %mev%,k is the energy
difference between possible transitions.

Three special cases of the general form of the electron speed distribution
can be identified:
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5.7.1.1 Thermal Motion Dominant: Maxwellian Distribution Here,
2 eE2,
kpTy > gm (5.44)
and so (5.39) has the solution

F=Fy (5.45)
5.7.1.2 Thermal Motion Negligible: Druyvesteyn Distribution Taking w =0,

Erms = Fo and € = 2m,/(m, + my) = constant, A\, = constant and assuming
negligible thermal energy in the gas, yields

3, (bmat\®
from which the Druyvesteyn distribution function Fp can be defined:
Fp = Aexp (—-Bu*) (5.47)
1T%/%(5/4) n
~ wI5/2(3/4) ) (6.48)
1 1*(5/4))2
= — —t 5.49
ar (verm ¢49
where the average energy is given by
1 - T(5/4) (2\*
o2 = ol [ 2
oMt TG/4) \3 eEg); (5.50)

Note that the Druyvesteyn distribution has significantly fewer high-energy
electrons in comparison with a Maxwellian for the same total energy con-
tent; this is shown in Figure 5.1, in which the Druyvesteyn and Maxwellian
distributions are compared.

5.7.1.3 Harmonic E, Thermal Motion Negligible: Amended Druyvesteyn As-
suming w # 0, and £ and Amgp = both constant, yields a corrected Druyvesteyn-
type distribution:

3 Ime? \* | 3, [meuw)?
W="2¢ 22" = 2 .
2t (eE,msAmfp) 3t (eEms) 55D
5.7.1.4 High Frequency Limit For the case of w > v, in (5.51), the distribu-

tion function becomes Maxwellian in form, but with an anomalous tempera-
ture T*, which incorporates the energy density of the electric field:

(5.52)
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Druyvesteyn

Maxwellian

Fig. 5.1 Graphs of the Maxwellian and Druyvesteyn speed distributions for the same
total energy content, with particle speed along the horizontal axis. The Druyvesteyn
has significantly fewer high-energy particles in comparison with the Maxwellian.

where

2eE2

kgT* = kBTg + 3mw2£

(5.53)

5.7.1.5 General Form Integrating (5.39) for the general distribution function
[64, 85)] yields

B
R=C (1 + Bl_iE) exp(—e) (5.54)
where
2
mu
= 5.55
€ 2kBTy ( )
1 (B2 N2
P 5.56
YT 3\ kBT (5:56)
mAZ w?
B2 = Tf;g (5.57)

and C is a normalising constant.
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5.7.1.6 Restrictions The construction of (5.39) is valid under the following
assumptions:

e the mean free path of electrons is much shorter than the dimensions of
the confining vessel;

o the plasma system has reached steady-state;

e the velocity distribution function can be expanded in spherical harmon-
ics, retaining only the first-order terms;

In addition, (5.47), (5.51) and (5.54) are restricted to constant &, Amfp.
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6.1 NOTATION

SYMBOL MEANING REF

b impact parameter

bo critical impact parameter (6.6)
B magnetic field

E electric field
Jr longitudinal invariant (6.52)
kp Boltzmann constant

m particle mass

me electron mass

my reduced mass (6.1)
n particle number density (5.1)
rL Larmor radius (2.21)
Tp plasma temperature

T, gas (neutral) temperature

Up relative speed

W) kinetic energy parallel to B (6.33)

Wy kinetic energy perpendicular to B (6.33)

up diamagnetic drift velocity (6.44)
a bulk velocity (5.2)
ar test particle scattering factor (6.20)
B reciprocal thermal speed (6.22)
T Gamma function

€ energy density (5.4)
A argument in Coulomb logarithm (6.15)
Ae mean free path for electrons (2.19)

Acg mean free path for gas particles (2.19)
Ap Debye length (2.17)

Hbs magnetic moment of a particle of species s (2.33)
Ve electron-neutral collision frequency

or Rutherford differential scattering cross-section (6.2)
13 energy loss factor (5.40)

6.2 BASIC DEFINITIONS

Elastic Collision: a collision between two bodies in which the total kinetic
energy and the total translational momentum before and after the collision
are the same.

Inelastic Collision: a collision between two bodies in which the particles before
and after collision are the same, but the total kinetic energy has been changed.
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These are excitation collisions, in which there is significant energy transfer into
internal vibrational or rotational modes of at least one of the bodies.
Transformation Collision: one in which the particles before the collision are
different from those after the collision. An example is impact ionisation.

6.3 BINARY COLLISIONS

The asymptotic deflection angle in the centre of mass co-ordinate system for
the incident particle relative to its original trajectory is denoted 6o.

The reduced mass m, for binary collisions between particles of mass m,
and mg is defined to be
__Mmimg

T omi+me 1)

my

Tt is essential to use m, in the centre of mass frame.

6.3.1 Elastic Collisions Between Charged Particles

6.3.1.1 Binary Coulomb Collision For two particles with charge and mass g;,
my, © = 1,2, undergoing a Coulomb interaction at a relative speed u, and
with impact parameter b, the Rutherford differential scattering cross-section
for Coulomb collisions is given by

_ B
45in*(6o/2)

where 6, is the asymptotic deflection of the incident particle in the centre of
mass frame, given by

or(ur,00) = (6.2)

by
tan(6o/2) = T“ (6.3)
9192
" dmegmyu2b (8D ©4)
_ 91¢
=t (@ (6.5)

and the critical impact parameter by for deflections of 90° is defined as follows:

— | q1g2 |

bo = ye— (ST) (6.6)
_lage]|
= ol (cgs) (6.7)

The cross-section for scattering through 90° in a single collision is

Tg90e = 7rb§ (6-8)
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6.3.1.2 Multiple Coulomb Collisions In a fullly ionised plasma, it is more
likely that an electron will suffer many small angle deflections as a result of
encounters with ions of charge ¢. A small angle deflection 6 is characterised
by the impact parameter (using (6.3)):

6077!0:: ~ binas

B~ i (6.9)
Practical values for the extrema of the impact factor are:
bmas ~ AD, (6.10)
bmin & Zlﬂ—e::Tlt% ~ ﬁ; (81 (6.11)
bmin & #‘;ﬁ ~ 315:7.}‘ (cgs) (6.12)

Note that the approximation for bq. assumes Debye shielding makes deflec-
tions negligible for b > Ap; the approximation for by, is derived on the basis
that only small angle deflections are important, and hence the maximum such
angle satisfies tan(fmas/2)  Omac/2 = Omaa /2~ 1.

The cross-section for scattering an electron through 90° as a result of mul-
tiple Coulomb collisions with ions is

2
— gqe
Tmgoe = 8T ( 47r€omeu3) InA  (S) (6.13)
ge \?
Tmoge = 8T (meuﬁ ) InA (cgs) (6.14)

where the term In A, referred to as the Coulomb Logarithm, is defined via

A= Ii"ﬂ, (6.15)
bmin
and for most laboratory plasmas, 10 <InA < 20.
The ratio of the cross section for multiple scattering through 90°, and single
scattering through 90° is given by

Ime® _ gInA (6.16)
05900
showing that a large angle deflection of an electron by multiple Coulomb
scattering is at least two orders of magnitude more likely than that arising
from a single encounter with an ion.
Restrictions: The results in this section are strictly true only for a Lorentzian
gas, that is, a gas of mobile electrons in the presence of stationary ions in which
electron-electron interactions are ignored.
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6.3.1.3 Relaxation Times for Maxwellian Distributions A test particle, mass
m, charge Z, travelling at speed u through a Maxwellian distribution of scat-
tering particles, with temperature T, chargeZ,e, number density n, and mass
my, has the following associated timescales for physical processes:

u

slowing down time: 7= —————————— 6.17
g = AT mjmy)a 8 (B (617
u
deflection time: = 6.18
o ™ = o et (Brn) — $(Bu)] (6.18)
hange ti u 6.19
energy exchange time: 75 = m)- (6.19)
where
Z27%e¢n,log A
o = ~ord@m (SI) (6.20)
2 72 4
= 82,2 ¢ nslogh ;zns logA (cgs) (6.21)
me \ 2
Br= (m) (ST & cgs) (6.22)
8
_ erf(z) — zerf'(z)
U(z) = o2 (6.23)

and where erf(z) is the error function [2].

Note that 7 is related to the dynamical friction term in the Fokker-Planck
description (5.32); 7p is the relaxation time for an initially anisotropic distri-
bution to become isotropic, and is derived from the diffusive Fokker-Planck
term (5.33); 7 is the typical time-scale for the relaxation of a homogeneous
distribution to Maxwellian form.

Two special cases can be identified: very slow test particles (Bu < 1); and
very fast test particles (Bu > 1). Given that:

{Zw/ﬁ asz — 0,
erf(z) — (6.24)

1 as T — o0;

{29:/(3\/7?) asz — 0,
U(z) - (6.25)

1/(22%)  asz — oo;
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then
37
——— asfu—0
2(1+m/m, 3 " ?
o 4 2 , 3/ sarb; (6.26)
U’
Trmfmga, 0=
2
i\a/;g as Gru — 0,
™D, e (6.27)
w
— as Bru — 00;
Qr
2
38‘:?; as fru — 0,
TE — o 1‘5 T (628)
fru as fru — 00;
20,

Self-collisions Where the test particle and scatterers are identical, 7, gives an
indication of how long the gas will take to relax to a Maxwellian. Assuming
thermal velocities such that 8ru ~ 1 [15] yields

setf ., (2ksT/m)
Ty R~ .
darp(1)

Extending the calculation to a distribution of test particles encountering a
distribution of scattering (background) particles allows characteristic times to
be quantified for two Maxwellian distributions at (slightly) different tempera-
tures to relax to a single distribution, via different processes: electron-electron
collisions, 7e; electron-ion collisions, 7.;; and ion-ion collisions 7;; [19]. Tak-
ing a fully ionised plasma of electrons and ions with equilibrium Maxwellian
distributions characterised by temperatures T, and T, respectively, then

V108red (kpT,)3/?mi/?

(6.29)

Tee R et lOgA (6.30)
V108red (kpT,)*/*m;
o _“%B_)__m_ (6.31)
Z2nime’ “etlog A
T087e2 (kpT:)3/2m3/?
s o Y2087 (kpTi)* P (6.32)

n;Z%tlog A

6.4 PARTICLE DYNAMICS

The following concepts and definitions are relevant throughout this section,
which considers particle motion in imposed fields, rather than the collective
dynamics of plasmas:
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Guiding Centre: The basic motion of a charged particle is gyration in the
plane perpendicular to the magnetic field, coupled with translation arising
from any electric field or field inhomogeneity. The locus of points defining the
centre of the gyration is termed the guiding centre.

Kinetic energy W: The kinetic energy W of a particle with mass m and
speed v is defined as

W= %mzﬁ
= %mvﬁ + %mvﬁ_
=W+ Wy, (6.33)
defining the parallel, and perpendicular, components of the kinetic energy,

W), WL, in the directions parallel, and perpendicular, to the direction of the
magnetic field.

6.4.1 Drifts

The following drift velocities are for single particle motion in the presence of
imposed electric and magnetic fields.

6.4.1.1 Constant E, B A charged particle moving in the constant fields E,
B will acquire a drift velocity vg:

ExB

Vg = —;2—, (SD) (6.34)
ExB

=c g (cgs) (6.35)

Note that the drift is independent of charge, and so no charge separation
arises.

6.4.1.2 Nonuniform E, Uniform B: A spatially non-uniform electric field
together with a uniform magnetic field produces a particle drift due to the
finite larmor radius effect, modifying (6.34):

1 E xB
vp = (1 + Zriv“’) B (S1) (6.36)
1 E
=c (l + Zr%V2> ;2B (cgs) (6.37)

It is clear that the drift is now different for particles of different mass, and
therefore charge separation can occur.
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6.4.1.3 Non-Uniform B, E = 0: grad B drift A particle of charge ¢ moving
in the spatially non-uniform magnetic field B will acquire a drift velocity vg

Wi

ve= g5 (BxV)B, (SD (6.38)
w.

vg = chJ; (B xV)B, (cgs) (6.39)

where W is the particle’s kinetic energy in the plane perpendicular to the
direction of the magnetic field.

Note that since the drift velocity is charge dependent, this drift can create
charge separation.

6.4.1.4 Non-uniform B, E = 0: Curvature Drift If the magnetic field lines
are curved, then not only does the particle of charge ¢ drift according to
(6.38), but there is also a curvature drift, given by

v, = %ﬂ(a x (B-V)B) (S) (6.40)
- 2;;:" (Bx(B-V)B) (&) (6.41)

where W), is the particle’s kinetic energy in the direction of the magnetic field.
6.4.1.5 External Force Drift The presence of a constant, non-electromagnetic
force density f,;; in addition to a uniform magnetic field results in a particle
drift given by
m
vy = Jga(fuu X B) (S (6.42)
me
= Befen ¥ B (cE9) (6.43)

6.4.1.6 Restrictions The drift velocities above are derived under the follow-
ing approximations:

the charged particles do not give rise to any appreciable collective effect
(sparse plasma);

the gradient scale-length for magnetic field variations is much greater
than the larmor radius;

the time-varying fields change on time-scales much less than the cy-
clotron frequency for the particle concerned;

radiation is ignored;

all collisional effects are ignored;

all speeds are non-relativistic;
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6.4.1.7 Uniform B, non-uniform density: Diamagnetic Drift For a fluid plasma
satisfying an equation of motion

mn [+ V] = -+ B ruxB) ) (@40

=-Vp+qn(E+ux B/c) (cgs) (6.45)

where p is the pressure, and n the plasma number density, the diamagnetic
drift velocity up is given by

Vpx B
up =— nB? (SI) (6.46)
Vpx B
=-—c b7 (cgs) (6.47)

Note that up is a fluid, not a particle, concept, in which collisionality is
important (see discussions in [23, 98]).

6.4.1.8 Motion in a Monochromatic Plane Wave A plane polarized electro-
magnetic wave with field components E and B and frequency w will cause a
charged particle to oscillate with the electric field of the wave. For sufficiently
intense waves, a relativistic calculation [15] shows that a charged particle will
drift in the wave direction with a velocity v, given by

D W
=1 (%) EXB) () (6.49)

where (---) denotes the average over one wave period.

Where the wave is spatially inhomogeneous, so that the electric field has
a position dependent amplitude, then there is a net force f, in the direction
away from regions of high field intensity (even non-relativistically), given by
[15, 70]

_ 1 7gs\2 2
fr= (%) VE (6.50)
where E denotes the electric field magnitude at the particle position. The
force resulting from (6.50) is referred to as the ponderomotive force.

6.4.2 Adiabatic Invariants

6.4.2.1 Magnetic Moment For a particle of charge g, moving in a magnetic
field which is non-uniform in time and space, the magnetic moment pys is an
adiabatic invariant of the motion:

Hos = KBJ—'- = constant (6.51)
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6.4.2.2 Longitudinal Invariant The longitudinal invariant Jy, is defined by

1/2

Jp = f vyds = / ’ {%(W - /sz)] ds (6.52)

where ds is an element of the guiding centre path, and the interval encom-
passes one complete cycle between reflection points a and b, that is, between
zeros of the integrand.

6.4.3 Magnetic Mirror

A particle moving in a non-uniform, axisymmetric magnetic field may be
reflected by the constancy of uss (6.51), if the total energy of the particle
W = Wy + W) is a constant, and if the magnetic field increases to the point
where W, = W. Define the pitch angle by

tanf = 2 (6.53)
gl

where v denotes the particle speed in the direction of the magnetic axis, and
v, the speed in the orthogonal plane. A particle will be reflected if

1/2
sind > ( = ) (6.54)

'maz

where Bj,e. is the maximum value of B. Such a configuration is termed
a magnetic mirror. Two such configurations back-to-back form a magnetic
bottle, in which particles are reflected from the strong magnetic fields at each
end. If the minimum value of B between the mirrors is Byy,,n, then the mirror
ratio R is defined as

R= %""ni:f (6.55)
and particles will be reflected if
sinf > R™'/? (6.56)

The propability p that particles will be lost from such a bottle, assuming a
uniform distribution of particle velocities inside the bottle, is given by

p=1- (R—R'—l)m (6.57)

assuming no collective plasma effect. In practice, the plasma inside such a
bottle relaxes collisionally in such a way that the component of the distribution
depleted by mirror losses is continuously replaced, resulting eventually in the
total loss of the plasma on a relaxation timescale.
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6.5 TRANSPORT COEFFICIENTS

6.5.1 Fully lonised PI. Zero Magnetic Field, Krook Operator

Using the Krook collision operator (5.30) for an unmagnetised plasma, and
assuming a Maxwellian equilibrium, we have the following basic transport
coefficients for particles of species s, having number density, charge and mass
ng, ¢s and mg respectively responding to the application of a uniform electric
field:

2
electrical conductivity: o, = Dody (6.58)
MsVe
. . gs
articl bility: = X
particle mobility: p, p—. (6.59)
diffusion coefficient: D, = EEI— (6.60)
MsVe
k3T
thermal conductivity: K, = SnakpT (6.61)
2mgv,
kT
viscosity: 7y, = n”lB (6.62)
c

Restrictions: Note that the collision frequency v, has been left unspecified in
(6.58) -(6.62). The strong dependence of the collisional term on the particle
speed means that v, can vary widely depending on the collision model. Note
also that the plasma is assumed to be close to equilibrium (implicit in the
construction of the Krook operator), and that the electric field is far below
Ep, the threshold for electron runaway (see (9.112)).

6.5.2 Lorentzian and Spitzer Conductivity

6.5.2.1 Lorentz Conductivity A Lorentzian plasma is one in which the ions
form a stationary, infinitely heavy neutralising background charge distribu-
tion, and the mobile electrons interact solely with these ions; electron-electron
interactions are ignored.

In this limit, an exact expression for the plasma conductivity, oy, for an un-
magnetised plasma can be found by expanding a Fokker-Plank collision term
for small departures from a Maxwellian equilibrium. The result is [86, 98]

5 = 2/2Ureo) ma (kpT)*
v Ze2(mm,)3/2In A

(ST) (6.63)

3 25/2m§/2(kBTe)3/2

= Z(mm ) In A (cgs) (6.64)
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where In A is the Coulomb logarithm term (6.15), and Z is the charge on the
ion, assuming only one species of ion.

6.5.2.2 Spitzer Conductivity The Lorentzian result (6.63) can be extended to
accommodate electron-electron interactions, as well as ions of different species.
The resulting Spitzer-Hiarm conductivity is given by [86, 98]

0s = YEOL (6.65)

where g is a correction factor dependent on the ionic charge; typical values
were calculated by Spitzer and Harm:

V4 1 2 4 16 00
yg 0582 0.683 0.785 0.923 1.000

An empirical approximation to (6.65) is [98]

-1 9
0.39 ) Ne€ ., (6.66)

gs = (0.295+ m P

where the collision time 7, is defined by
2

= 3(27'.)3/2512)7"3/ (kBTe)*/?

¢ €2 Zegme In A

8 (2)

~8\~x ZegeineIn A

(s1) (6.67)

(cgs) (6.68)
and where the effective ion charge Z.g is given by
2
Zeg = S2—F (6.69)
in which the sum is over all ionic species s with corresponding charge Z,.

Restrictions: Note that in constructing (6.65) and (6.66) the dependence on
Z of the Coulomb logarithm was ignored. Note also that it is assumed that
the plasma is close to its Maxwellian equilibrium, and that the applied electric
field is far below Ep (see (9.112)).

6.5.3 Fully lonized and Magnetized Plasma: Braginskii Coefficients

A fully ionized plasma of two mutually interpenetrating fluids of ions and
electrons, in the presence of a magnetic field, is analysed under the following
assumptions [16, 17, 33, 98]:
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there is no neutral component; the plasma consists of ions, charge Ze,
and electrons
m; 3> me is exploited in the calculation of transport coefficients

the equilibrium distribution function for ions and electrons is Maxwellian,
though T; is not necessarily equal to T,

the analysis is based on approximate solutions of the two-fluid Fokker-
Planck equations, using the Rutherford scattering formula for collisions

the minimum and maximum impact parameters used here are ~ €2 /(mv?)
(6.11) and ~ Xq (6.10)

the magnetic field does not influence the collision event itself, therefore
the calculations are valid only for magnetic fields for which the Larmor
radius is large compared to the Debye length

Braginskii’s transport analysis yielded approximate forms for the electrical
resistivity, thermoelectric and thermal conductivity tensors, each as a function
of w.r, where w, =x B, and 7 is a typical collision time.

The form of each transport quantity is presented as a rational function of
w,r for ions and electrons, increasingly accurate for w,7 > 1, and valid over
a range of Z. The numerical coefficients in the expansion are presented in
Table 6.2; each numerical value is claimed to be better than 1% accurate [16],
though the actual transport coefficients themselves can be in error by as much
as 10-20% in the intermediate region w.r ~ 1 [17].

The results are summarised in the following sections, using the notation

Fo T Weele (6.70)
= ©.71)
A, = a:ﬁ + 6113 + & (672)
A; =g} +2.70zF + 0.677 (6.73)
1/2 3/2
— 3(anyzme (kBT 7
Te 3(27?) €y 64227»,- TnA (SI) (6.74)
L
= 4(20) %4 Z%n; n A (cgs) (6.75)
172 \3/2
_ /2,2’ (kBTe)>*
7 = 3(2m)* € A ZinIn A (SI) (6.76)
3m}/ 2{1"1?/ 2

= e Pt 2 A (cgs) (6.77)
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and where subscripts ||, L on vectors denote the directions parallel, and per-
pendicular, to that of the equilibrium magnetic field Bl:

u =b(b-u) (6.78)
ur =bx(bxu) (6.79)
b= Bo/Byg (6.80)

Table 6.2: Braginskii numerical transport coefficients

Z=1 Z=2 7Z=83 z=4 Z-ox

ap 0.5129 0.4408 0.3965 0.3752 0.2949
Bo 07110 0.9052 1.016 1.090 1.521
Y 3.162 4.890 6.064 6.920 1247

d 3.770 1.047 0.5814 0.4106 0.0961
& 1479 1080 9.618 9.055  7.482

oy 1.837 0.5956 0.3515 0.2566 0.0678
ag  0.7796 0.3439 0.2400 0.1957 0.0940
o) 6416 5523 5226 5.077 4.63
of 1704 1704 1704 1.704 1.704

/2681 0.9473 0.5905 0.4478 0.1461
U 3053 1784 1442 1285 0.877
! 5101 4450 4.233 4124 3.798
B 3/2 3/2 3/2 32 32

4 1192 5118 3525 2.841 1.20
N0 2167 1537 1353 12656  10.23
4, 4664 3957 3.721 3604 3.25
N B/2  B/2  5/2  5/2  5/2

6.5.3.1 Momentum Transfer From lons To Electrons The rate of transfer of
momentum from ions to electrons R consists of two contributions: a friction
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term R, resulting from the relative velocity u between electrons and ions, and
a term Ry pertaining to the presence of thermal gradients. The full result is

R=R,+Rr (6.81)
R, = —qu) —aiui +arbxu (6.82)
Ry =—f"VT. - 817V, T. - 876 x VT, (6.83)
where
a) = Melte Qg (684)
MeNe izl +af
= Melle (j _ %1%e T % 6.
oy e ( A, (6.85)
_ Mene e (072 + af
ap = _Te A, (6.86)
BT =nbio (6.87)
) 2 i
i = g, e 5 (6.88)
A,
11 02 u
o, Ze BT + 55) (6.89)

e

6.5.3.2 Electron Heat Flux The electron heat flux g, also has a friction and
thermal contribution:

45 =que+dre (6.90)
4y, = B uy + BT us + b x u (6.91)
ar, = —KkjV|Te =3 VLT, — 63b x VT, (6.92)

where
B =T8¢, (=l LA (6.93)
NeTeTe
K = Zmi I (6.94)
e NeTeTe ’Y{xz + 76 6
=-—Cc e 0 .95
K1 e A, ( )
S = neTeTe Te (’Yi’xf +16) (6.96)

me A,
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6.5.3.3 lon Heat Flux The ion heat flux g; arising from thermal gradients
is the only significant transport process associated with the ions:

¢ = —k{V|T; — k1 V. T + 6ib x VT (6.97)
where

. Tors

K = 39067 (6.98)

m;

i niTim 22} +2.645

o= S (6.99)
i _ n;Tim; 15(521?/2 + 4.65)

Kp = i A (6.100)

6.5.3.4 Resistivity The momentum transfer from ions to electrons as a result
of relative velocity u between them (see Section 6.5.3.1) allows the definition
of resistivity components:

)| = Moo (6.101)
1 2 '
=m0 (1 ATt ”’eA+ “0) (6.102)
€
1,2 1"
= —nozi”(alze +05) (6.103)
€
m,
= g (6.104)
‘e

6.5.4 Corrections to Braginskii Coefficients

Recent calculations [33] show significant departures from Braginskii’s standard
transport coefficients. These newer calculations used a direct and accurate nu-
merical simulation of the linearized Fokker-Planck equation for a fully ionised
electron-ion plasma, for a continuum range of w,r (using least-squares curve
fitting) and for a much larger range of Z. Numerical discrepancies of up to
65% in Aa, k1 and kA are reported for 0.3 < w.r < 30.

Moreover, the asymptotic forms of certain transport coefficients were found
to be different from that predicted by the Braginskii modelling:

z;!  from (6.85),
lim  —oA Q¢ 2/ (6.105)
@0 MeNe/Te | 272°  from [33).
—2
im i N z, from (6.88), (6.106)
Fedoo T z°*  from [33].
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6.5.5 Equal Mass Plasma Transport

The equivalent Braginskii transport analysis for an electron-positron (e-p)
plasma is simpler due to the mass symmetry in the model [1], and the single
collision time. The resistivity in the e-p plasma is significantly different:

n =0.5129m9  Braginskii, electron-ion result (6.107)
n) = 0.1071ng e-p equivalent (6.108)
n1 =0.555379  Braginskii, electron-ion result (6.109)
nL =0.384570  e-p equivalent (6.110)
na = —0.1334 7 Braginskii, electron-ion result (6.111)
=0 e-p equivalent (6.112)

where the original Braginskii coefficients from Table 6.2 have been used for the
case Z = 1, weeTe = 1 to make a comparison with the computed e-p results
of [1]. Further notable differences exist between electron-ion and electron-
positron plasmas in the thermoelectric, thermal conductivity and diffusion
tensors, across a wide range of w,7; see [1] for extensive detail.
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7.1 NOTATION

SYMBOL MEANING REF
b, ratio of thermal to wave mode energy (7.162)
c speed of light in vacuo = (uo€0)~!/?

Ca Alfvén speed of single fluid plasma (2.24)
Cth sound speed in plasma gas

B magnetic induction

E electric field

I, modified Bessel function of order n

J current density

K cold plasma dielectric tensor (7.20)
Mg mass of particle of species s

n refractive index of plasma, = kc/w

Ne cut-off density for an electron plasma (7.56)
Ng number density of particles of species s
Ntot total plasma density (7.79)
p scalar gas pressure of single-fluid plasma (7.84)
Ds scalar gas pressure of species s

P total gas kinetic plus magnetic pressure (7.128)
qs charge carried by particle of species s

s label defining species, e.g. ion (i) or electron (e)

T temperature of single-fluid plasma

T, temperature of gas species s

u bulk fluid plasma, velocity (7.81)
Us velocity of species s

Z plasma dispersion function (10.7)
€ vacuum permittivity

€ hot plasma dielectric tensor (7.152)

n fluid plasma, resistivity

m vacuum permeability

p mass density of single-fluid plasma (7.80)
Pe free charge density

Ps mass density of speciess

w frequency of electromagnetic wave

wp plasma frequency of the whole plasma, (2.6)
Wes cylcotron frequency of species s (2.7)
Wy plasma frequency of species s (2.6)
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7.2 WAVES IN COLD PLASMAS

This section summarises small amplitude waves in a pressureless, magnetised
plasma. The full model equations are given, followed by the dielectric tensor
and general dispersion relation resulting from the plane wave solutions of
the linearised equations. Special cases of local dispersion relations valid near
particular frequencies are also given. There are a variety of excellent texts on
these topics from which the results presented here are drawn [15, 19, 29, 50,
52, 88, 90]. The reader is encouraged to consult these texts for further details.
We shall assume a frequency hierarchy as follows [15, 88]:

wei K wee < Wpe (7.1)
where the subscript ¢ refers to any ion. Of course, in a plasma with several
ion species, each ion cyclotron frequency varies with the ion mass.

7.2.1 Model Equations

The standard equations for a multi-component magnetised cold (pressureless)
plasma are as follows (SI). For each particle species s, we have:

on,
5 t’ + V- (ngus) =0, (7.2)
Ou,
sty +ngmg(us - Vius = ¢(E +u, x B), (7.3)
J= Z NsdsUs- (7.4)
8
These species equations, together with the Maxwell Equations:
8B

E=-__ 7.

V x 5 (7.5)
OF

V x B = pod + #0605, (7.6)
V- E = pc/eo, (7.7)
V:-B=0, (7.8)

provide the mathematical framework for describing the dynamics of cold plas-
mas.
These equations may be cast in cgs-Gaussian units as follows:

ong
a8t

+ V- (netg) =0, (7.9)
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Oug

at

NgMg

+ ngms(u, - Vi, = ¢o(E + u, x B/c), (7.10)

with the appropriate Maxwell equations:

oB

VxE=-"%0 (7.11)
¢V x B =4nJ + %—f, (7.12)
V-E =4n/p, (7.13)
V-B=0. (7.14)

7.2.2 Cold Plasma Variable Dependencies

For small amplitude disturbances varying as expli(k - 7 — wt)] about a static
equilibrium, and assuming a stationary ion background for simplicity, the
various relationships between the (electron) plasma variables can be written
as follows:

n k-u

-~ = (7.15)
E =Mu (7.16)
B = \k x u) (7.17)

where subscript 0 on a variable denotes an equilibrium quantity, k is confined
to the x-z plane, Bg = 2 By, M is the matrix given by

—ilw  wee 0
M=| —wee —iw 0 |, (7.18)
0 0 —iw
and
X = igonge (K* +w?/) 7. (7.19)

7.2.3 Dielectric Tensor for a Cold Magnetised Plasma

Small amplitude disturbances of the model equations, assuming that the uni-
form magnetic field points in the z-direction, yield the following expression
for the dielectric tensor K, defined by J = KE:

§ -iD 0
K=|iD S o (7.20)

0 0 P
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where
=(R+L)/2 (7.21)
=(R-1L)/2 (7.22)
w2 w
R=1-) -2 .
. w? W+ wWeg (7.23)
w
=1-) & .
2 o un (7.24)
w? w?
P=1—Z§=1-w—; (7.25)

K

For the simple case of an electron-proton plasma, (7.23) and (7.24) can be
written as

w
T (Wt wei) (@ + Wee) (7.26)

2
L=1-—% (7.27)

(W = wei)(w — wee)
Note that the cyclotron frequency w., of species s carries the sign of the
charge on species s. The general solution for linear waves in a cold magnetised

plasma can be expressed entirely in terms of a matrix equation involving only
the perturbed electric field:

S —n?cos?d —iD n2coshsind E,
iD §—n? 0 E, | =0, (7.28)
n? cos@sin 0 P —n2%sin?6 E,

where n = kc/w is the refractive index.

7.2.4 General Dispersion Relation

The general dispersion relation for waves in a uniform, magnetised cold plasma
propagating at angle 8 to the direction of the magnetic field is derived from
the determinant of the matrix in (7.28):

(S'sin® @ + Pcos® 8)n* — (RLsin® 6 + PS(1 +cos? §))n® + PRL =0 (7.29)
An alternative form is

P(n? — R)(n® — L)

29— .\ — I\ T
tan*6 =~ (e T RL) W = P)’

(7.30)
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The electric field components transverse to the equilibrium magnetic field are
related by
iE, n%*-8

=t (7.31)
Y

There is also a simple relationship between the transverse velocity compo-
nents:

Vas _ 1By By — wesJw

Foue 1= (erf V(B [Ey) 32
7.2.4.1 Parallel Propagation
Plasma Oscillations A solution to the dispersion relation for § = 0 is
P=0 (7.33)
W= wf, (7.34)

which corresponds to electrostatic plasma oscillations. Here the electric field
is aligned with the magnetic field,

E;,=Ey=0 (7.35)
the oscillation is purely longitudinal,
Ugg = Uy =0 (7.36)
Vo= ——2 B, (7.37)
wpsMg

and at the plasma frequency,
W= wp. (7.38)

There is a maximum amplitude for such oscillations, revealed in a treatment
of the non-linear cold non-relativistic electron plasma oscillation [28, 68]:

Emas = ’;Lez (SD) (7.39)
Epasz = ZI‘L:) (CgS) (7.40)

where k is the wave-number corresponding to a longitudinal electric field dis-
turbance of the cold electron fluid of the form
E, = Eysin(kzo — wpt) (7.41)

with 2o denoting the initial position of a fluid element, about which such oscil-
lations are taking place. The condition (7.39) corresponds to the breakdown
of the harmonic behaviour.
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For relativistic cold electron plasma oscillations, (7.39) can be generalised
to

Eimag = V2 2600 (o 1y12 (7.42)
(1 wp\V?
-2 ao

In equal-mass plasmas, such as electron-positron plasmas [27), the electro-
static oscillation is not a stable mode, since there is no static ion background.
The instability develops in the number densities of each species, causing large
density gradients to evolve which deplete the total plasma density in the
central regions of the oscillation and lead to a variation in the local plasma,
frequency across the oscillation region, exacerbating the growth of density
spikes.

Circularly polarized waves  For waves propagating parallel to the magnetic field
(8 = 0), the solutions to the dispersion relation are

n’=R  (RCP) (7.44)
n*=L  (LCP), (7.45)

which correspond to circularly polarized waves. The polarization is deter-
mined from the usual radio convention:

15—’ =+1 (Right Circular polarization) (7.46)
y

iE, . o

= -1 (Left Circular polarization) (7.47)
Yy

The general solutions (7.44)and(7.45) have particular forms in certain fre-
quency ranges.

Faraday Rotation The circularly polarized modes described by (7.44) and
(7.45) have different phase speeds, due to their different refractive indices.
This effect can be exploited as a plasma diagnostic, since any plane polarized
wave propagating parallel to the magnetic field can be expressed as a super-
position of the circularly polarized modes. Consequently the direction of the
plane of polarization must vary as the wave propagates, since each circular
component travels at a different phase speed. In general terms this gives rise
to a rotation of the plane of polarization, with a rotation angle ¢ given by
[46]:
S 6d 7.48
¢—m A wWpWwee cosBdz (7.48)
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where it is assumed that the plasma is a cold electron plasma, w > wee is
the wave (circular) frequency, 6 is the angle between the magnetic field and
propagation directions (assumed small), and the plasma extends a distance L
along the propagation direction.

The utility of Faraday rotation in an astrophysical context lies not in cal-
culating the absolute rotation angle, since the initial direction of the plane of
rotation is not known, but rather in exploiting (7.48) as a function of frequency
(or wavelength). Defining the rotation measure RM by [46]:

RM = y? (7.49)
1 [P wlwecosb
= oz /0 T oA (7.50)
so that 1 = RM/v? where nu is the wave frequency. A measure of the change
in 9 at two frequencies then yields RM, and consequently information about
the line-of-sight integrated product of density and magnetic field.
A related diagnostic is the dispersion measure, which yields the line-of-sight
electron number density, and is defined as follows. Assuming w > wp,Wee,
the dispersion relation can be approximated by

2
ke % (1 - %) (7.51)

where k is the wavenumber. Hence the total propagation time #prq, of a signal
traversing a length L of plasma can be approximated by

L, 1 [t
tprop & z + -2;'2-/(; w:dz (7.52)
d DM
=S (7.53)

where the dispersion measure DM is defined by

1 b,
DM = m/ﬂ wpdz (7.54)
The ratio of (7.50) and (7.54) is sometimes used to infer a mean density-
weighted magnetic field.

7.2.4.2 Resonances and Cut-Offs: Parallel Propagation The following defini-
tions are useful in discussing cold plasma waves.
A cut-off frequency is one for which the wave-number is zero.
A resonance frequency is one for which the group velocity of a wave is zero.
For an unmagnetised plasma, waves cannot propagate unless

w > wp (7.55)
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and so wp is the cut-off frequency for an unmagnetised plasma. Associated
with this is the concept of the cut-off density, n., defined for an electron
plasma as

w2egm,
ne=-—3—+ € (ST) (7.56)
4rw?m,
= 6—26 (cgs) (757)

At the cyclotron frequencies w = w, there are wave resonances. For an ion-
electron plasma, the LCP solution (n2 = L) has a resonance at w = w;, with
W = Wy, being a resonance for the RCP mode (n2 = R). A proper treatment
of the plasma response at these frequencies requires a kinetic theory approach.

Note also that the right and left circularly polarized modes also have cut-
off frequencies, i.e. those frequencies which define where the wave-number is
Zero.

Together, the resonances and cut-offs define different band-gaps for each
polarization where no wave solution exists.

There is no LCP wave for frequencies in the range

wei Sw Lwer (7.58)
and there is no RCP wave for frequencies in the range
wee <w < WCER (759)

where the cut-off frequencies wep,wer for the LCP and RCP waves respec-
tively are given as:
wor, & (W2, + W22 — we) /2 (7.60)
weor ~ (W + 4w ? + we) /2. (7.61)

Note that we have assumed w,, < wp. At high frequencies, the LCP and RCP
plasma modes resemble circularly polarized electromagnetic vacuum waves.

Alfvén Wave For ultra low frequency waves, such that w < we;, we can
simplify the expressions (7.23), (7.24) as follows:

RxLr1+c2/c (7.62)
leading to the dispersion relation for Alfvén waves:

, ke

YT e

~ k22, (7.63)
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lon Cyclotron Wave Asw — w,; from below, the dispersion relation changes
significantly from (7.63):

K2

W (W - w?). 7.64

2o (44— (7.64)
This electromagnetic mode is termed the ion cyclotron wave, and is in general
elliptically polarized. The group velocity of this wave tends to zero at the
ion cyclotron frequency, and so is resonant at we;. Note that (7.64) can be
generalised for propagation at an arbitrary angle 6:

k2c2

2
2 2 _ oy 08’0
w?lr wzi (w% —w?) T cod (7.65)

whistler waves At intermediate frequencies, namely w; < w < we,wp, the
local approximation is the whistler mode:

K2

W
1+ w2/ (wwee)

(7.66)
Assuming that wp < we, only the RCP solution exists, and so whistlers are
right circularly polarized modes.

Electron Cyclotron Wave The RCP mode has a resonance at the electron
cyclotron frequency, which can be generalised to the following expression for
propagation at an angle 6 to the equilibrium magnetic field direction:

2

P
w(w + wee cos ) (7.67)

w
nrl

This mode is referred to as the electron cyclotron mode.
7.2.4.3 Perpendicular Propagation For waves propagating perpendicular to

the equilibrium magnetic field direction, that is for # = /2, the dispersion
relation has the general solutions

n?=P Ordinary mode (7.68)
RL
n? = = Extraordinary mode (7.69)

The Ordinary mode (O-Mode) is purely transverse and linearly polarized,
as can be deduced from the third row of (7.28); it does not depend on the
magnetic field. The physical reason for this is that the electric field for this
mode lies in the same direction as the magnetic field and so particles are
accelerated parallel to Bg.

The extraordinary mode (X-Mode) has an electric field which lies in the
x-y plane, producing a mode which is elliptically polarized in that plane:

iE,JE, = -D/S (7.70)
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7.2.4.4 Resonances and Cut-Offs: Perpendicular Propagation The only res-
onance for perpendicular propagation occurs for the X-mode when S = 0,
giving rise to the hybrid resonances (using the frequency hierarchy of (7.1)):

w? mw?+w?, Upper Hybrid (7.71)

2
2 WpWeeWei .
wp ~ “’12»_"“"'—32 Lower Hybrid (7.72)
Note that from (7.70), as w = wy,, 1Bz /Ey — 00, showing that the X-mode
becomes predominantly longitudinal near the hybrid resonances.
The X-mode shares the same cut-offs as the circularly polarized modes,
namely R =0 and L = 0. The O-mode however cannot propagate below wp.

7.2.4.5 Fast Alfvén Wave For ultra-low frequency waves w < w¢; propa-
gating at 6 = m/2, only the X-mode is possible, and the dispersion relation
becomes once more (cf (7.63)):

, K

v 1+c/c2

~ k2. (7.73)

However, there is a very significant difference here from the parallel case, in
that from (7.70), since R ~ L, E, dominates in this Alfvén wave, making
it electromagnetically transverse, but mechanically longitudinal, since from
(7.16) vz > vy. This means that the perturbed magnetic field is parallel or
anti-parallel to the equilibrium magnetic field, making the wave magnetically
compressional.

7.2.5 Equal-Mass Cold Plasmas

For the special case where the positively and negatively charged species have
the same mass, for example in an electron-positron plasma, there are sim-
plifications arising directly from the symmetry. In particular, the dielectric
tensor K (7.20) has no off-diagonal components [87], since D = 0. Conse-
quently there is no Faraday rotation, and no ‘whistler’ type wave for parallel
propagation.

7.3 FLUID PLASMAS

The plasma here is treated as a continuum of charged matter density with
significant pressure effects. Separate equations for the fluid properties of the
ions and electrons can be derived from moments of the appropriate kinetic
equations; appropriate details can be found in advanced textbooks such as
(15, 21, 23, 44, 98].



104 PLASMA WAVES

7.3.1 Hydr ic E

& q

Here we assume, for simplicity, a two-component electron-ion fully ionised
and magnetised plasma. The continuum equations for each fluid species are
obtained via moments of the kinetic equation (5.8) (see (5.1) - (5.5)).

zeroth moment

6;;, + V- (ngug) = (%)c (7.74)

where the term on the right denotes the effect of collisions on the number
density of each species.

first moment The momentum equation for each fluid species s is

Ou,
Ps ( (;; + (‘us . V)u9> =qsng (B + us x B) — Vps + psFogt + Py (SI)
(7.75)

u, X B
= Qgsng (E + ,T> — VDs + psFect + Poor (cgs)
(7.76)

where F'.;; denotes an external force term, and Py denotes the momentum
transfer between the gas species. Note that (7.75) assumes a scalar pressure;
the most general form incorporates a pressure tensor P,, with Vp, being
replaced by V - P,.

The momentum equations for each species may be combined to derive a
generalised Ohm’s law:

E+uxB:nJ+l[

mime (2
ep

e Ot
1
+ o [meVp; —m;iVpe + (m; —me)J x B| (SI) (7.77)

uxB lmimeaJ
B+ c =nd+ [e Bt]

+ 5) [meVpi —m;Vpe + (mi—;ﬁ) J x B] (cgs)
(7.78)
Restrictions
o plasma is fully ionised, and overall neutral;

e each fluid has a scalar pressure;
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e viscosity is ignored;

e momentum exchange between ions (protons here) and electrons is as-
sumed proportional to their relative mean velocities.

7.3.2 Single Fluid MHD Plasma

The main results for small amplitude waves in single-fluid magnetohydrody-
namics (MHD) are summarised here. The model equations are stated, to-
gether with validity criteria, and the general dispersion relation is presented
and the wave properties discussed.

single fluid variables The single fluid macroscopic variables for an electron-ion
plasma are defined as follows:

Ngot = Ny + Ne number density (7.79)
P = pi + Pe = NiMy; + NeMe mass density (7.80)
u = (piu; + pette) /p bulk velocity (7.81)
g =gqin; —en, charge density (7.82)
J =nigiu; — neeu, total current (7.83)
P=Dpi+DPe total pressure (7.84)

The standard equations for a single fluid plasma are as follows (in SI):

% +V-(pu)=0 (7.85)
p(%+u-V>u=—Vp+JxB (7.86)

8 . 573\ _2 _s/3 12
(Bt +u V) (pp ) =3P nJ (7.87)
E +u x B =7nJ (Ohm’s Law) (7.88)

together with the (reduced) electromagnetic equations (again in SI):

V x B = pod, (7.89)
8B
VxE=-22, (7.90)

V-B=0. (7.91)
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In cgs units, the respective equations are:

p(%+u~V)u=—Vp+JxB/c, (7.92)
E+uxB/c=nd, (7.93)
V x B =4rnJ/c, (7.94)

16B
VxE= A (7.95)
V-B=0. (7.96)

Note that the density equation (7.85) and the energy (entropy) equation (7.87)
are the same in both sets of units.

The macroscopic single fluid variables are defined in terms of the plasma
components in the following equations, where we have assumed an electron-
proton plasma for simplicity:

Mot = Ni + Ne (7.97)
P =Mmin; +Mene (7.98)
J = e(niu; — nette) (7.99)
p=3NkgT (7.100)

It is vital to realise that the derivation of (7.85) to (7.88) is dependent upon
many simplifying assumptions, the details of which are not recorded here, but
the consequences of which can be encapsulated as follows [15]:

% <1 neglect displacement current (7.101)
w u .
o < - neglect 8;J in Ohm’s Law (7.102)
P
2
ww; P (E) neglect Hall term in Ohm’s Law (7.103)
w? c

2
& < (%) neglect pressure gradient in Ohm’s Law (7.104)
In general terms, the MHD description of a plasma is suitable only for non-
relativistic, low frequency, long-wavelength perturbations which do not give
rise to electromagnetic effects. Despite these restrictions, the model enjoys
widespread popularity. The special case of n — 0 is referred to as ideal MHD,
in which the plasma is perfectly conducting.

7.3.3 Variable Dependencies in ldeal MHD

Assume a homogeneous, static and stationary equilibrium, and take all linear
perturbations to vary as exp[i(k - 7 — wt)]. Then there are several useful
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inter-relations between perturbed variables (SI units):

(k-u)="2p (7.105)
Po

wpou =k (p+ Bo - B/po) — (k - Bo) B/po (7.106)

wB=—(k-Bo)u+ (k-u)Bog (7.107)

where subscript 0 denotes an equilibrium quantity. In cgs units, only (7.106)
is different:

wpor = k (p+ By - B/(4r)) — (k - Bo) B/ (4r) (7.108)

Equations (7.105-7.107) can be manipulated to yield other useful general re-
lations:

k-B=0 (7.109)
k2

p= 5P (7.110)

w- By = ku;p‘;"’ (7.111)

u-B= —’”23%3932 (7.112)

_ P (k-u)(k x By)

uxB po w? — k2¢2 cos? 0

(7.113)

where 6 is the angle between k and By, and where the total plasma pressure
perturbation P is given by

P=p+ By Bluy linear perturbation (SI) (7.114)
P=p+ By B/(4m) linear perturbation (cgs) (7.115)
(7.116)

7.3.4 General Dispersion Relation: Ideal MHD

The general dispersion relation for waves in a uniform ideal MHD plasma,
propagating at an angle 6 to the equilibrium magnetic field, is given by

(w? — K22 cos® ) (w* — k? (¢, + c2) w® + k'cfycicos®0) = 0.  (7.117)

The first factor in (7.117) defines the Alfvén mode; the second factor, the
magnetosonic modes.
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7.3.4.1 Alfvén Wave The Alfvén mode in MHD is a transverse, incompress-
ible mhd wave, with the following properties:

w = ke, cosf dispersion relation (7.118)
k-u=0 incompressible (7.119)
k-B=0 transverse magnetic (7.120)
E=0 no electric field (7.121)
p=-B-Bo/uo (8D (7.122)
p=—B-By/(4r) (cgs) (7.123)
P=0 constant total pressure (7.124)
u=*(sop) Y>B  wand B aligned (7.125)
%pou2 = %B2 o equipartition of energy density (SI)  (7.126)
1, 1., o .
Fhou” = EB /(4m) equipartition of energy density (cgs) (7.127)

Note that (7.118-7.127) are valid for finite amplitude MHD Alfvén waves, with
the total pressure statement restricting the maximum amplitude of the Alfvén
wave:

P = Diotal + Bopgar/ (240) = constant

1) (7.128)

P = Drotal + Biogar/ (87) = constant (cgs) (7.129)
7.3.4.2 Magnetosonic Modes The magnetosonic (or magneto-acoustic) modes
are waves satisfying the dispersion relations

(

where the + solution denotes the fast magnetosonic mode, and —, the slow
magnetosonic mode.

The relation between the magnetic and kinetic pressure contributions is as
follows:

wy? 1 1 1
—) = E(cf,, +c2)+ 3 [(c? + c2)? — 4c},c? cos? 6] /2

. (7.130)

B-B 2
- L g (1 - Eﬁ;'lcosﬁ o) p  (SI) (7.131)
th
B-By, & K22
ym= 9 — é (1 - -w—.‘,”i cos? 0) p  (cgs) (7.132)
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This means that

fast magnetosonic  w® > k*c}, cos’@  pressures reinforce  (7.133)

slow magnetosonic ~ w? < k%c}, cos’  pressures oppose (7.134)

7.4 WAVES IN HOT PLASMAS

This section summarises small amplitude waves in the context of plasma, ki-
netic theory, using the Vlasov description of plasma kinetics coupled with
Maxwellian equilibria. Excellent and accessible treatments of the full kinetic
theory can be found in a number of texts, for example [15, 19, 23, 50, 52, 67,
88, 90]; only the essential results will be stated here.

7.4.1 Dielectric Function for an Unmagnetized Plasma

For an unmagnetized (and therefore isotropic) kinetic plasma, the general
expression for the dielectric function e(k,w) is

q © df,/0u

elk,w) =1+ eomsk J_oo w—ku

du  (ST) (7.135)

2 5]
+ drg, Mdu (cgs) (7.136)

=1 mgk J_oo w—ku

where w is the wave frequency, k the wavenumber, and f, is the plasma
distribution function for species s. The consequent dispersion relation for
small amplitude waves is the root of (7.135):

L@ [ 1o
eomsk? [_oo u—w/k

(ST) (7.137)

drg? [ Of,/0u
mgk? J_ oo u—w/k

(cgs) (7.138)

7.4.2 Langmuir Waves

The dispersion relation for high frequency waves in an unmagnetised plasma
such that the perturbed distribution function varies as exp[i(k - r — wt)] is

w = wyp +iw; (7.139)

Wr & Wpe (1 + gk%\%) (7.140)

o T\Y2 wpe 3 1
wi = (8) g, &P (5 - 2k2)\%,) (7.141)
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Restrictions

o the plasma is field-free in equilibrium

e only the electrons are mobile; the ions are stationary

e the equilibrium distribution function for electrons is Maxwellian
. % > cth

e kAp K1

Note that these waves are purely electrostatic, damped because w; < 0,
a phenomenon termed Landau damping. These waves are known variously
as Langmuir waves, plasma oscillations, electrostatic waves and Langmuir
oscillations. These waves have the same frequency for all wavelengths. For
T, = 0, we recover the undamped, localised cold plasma oscillation of Section
7.2.4.1.

7.4.3 lon-Acoustic Waves
Allowing the ions to have a temperature T, a low frequency electrostatic wave

in which ion motion is important is the ion-acousti¢ mode, with dispersion
relation

w=wy +iw; (7.142)
ksTe K2 \'?
wr = (m—le m) (7.143)
P o R . . &)”exp __TJT ), (me
’ 8/ (1+k22)"% |\Ti 2(1+K223) m;
(7.144)

Restrictions

e the plasma is field-free in equilibrium
o derivation of (7.143) and (7.144) requires (kpT;/m;)'/? < w/k < (kpTe/me)'/?

o |wi/wy| € lonlyif T; € Te; if T; 2 T, then the wave is heavily damped,
and is not a true plasma mode
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In the particular case of T; « T, the frequency and damping terms simplify
to

T,\/? _
wpn k ("B_> (1+K223) 772 (7.145)
m;
wi o wp (M) (1+k223) " (7.146)
i ™ 8m¢ D N

Note that if kAp « 1, then there is a common propagation speed for all
waves, namely (kpT, /mi)l/ % _ the ion acoustic speed.

7.4.4 Dielectric Tensor for a Hot Plasma

Using the linearised Vlasov equation for a magnetised plasma,

Ba{t”’ %{f (uxB) Bf" (E+u><B) D _p (sp)
(7.147)

(?,;;9 +u %{f do (u x Bp) - Bf,, s (E' +ux BJc)- Bf,o =0 (cgs)
(7.148)

where f, is the perturbed distribution function for species s, and fy is the
corresponding equilibrium distribution function, the vector equation for small-
amplitude electromagnetic waves in the hot plasma may be written in the form

2
kx (kx E)+ %eE’ =0 (7.149)

Take the homogeneous equilibrium magnetic field to lie in the z-direction, and
assume that all perturbations have the harmonic form

expli(k - r — wt)] (7.150)
with
k=xky +2k (7.151)

Then the dielectric tensor € can be written in the form

€zg  €Ezy €gz
€= | €yz Cyy Eyz (7.152)
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where

ezw—1+z pse

COs Z 2[,.(113)2(("3)

n=-—o0o

(7.153)

= 1+Zﬂ"——' 20 30 (00 (00) + 202 1) — Ly(bo)]} Z(Gn)

n=-—o0o

€z =1— Z ps _b C!)s Z In(ba)CnaZ’(Cns)

n=-—o00

€y = IZ:‘: W e oy Z n[In(bs) = I, (65)] Z(Cna)
€ys = €xy

2 ©0
e = 3 B ) e 3 (b2 Guo)

€2z = —€zz

€yz = —izi W (bs/2)1/2 b 408 Z [Iﬂ(bs) - Iln(bi)] ZI(C"*’)

n=-—co
€2y = —€yz
together with the definitions
kikpTs
by = =28
MsWeg
oo = w + Njwes| mg 1/2
e ky 2kpT,

(7.154)

(7.155)

(7.156)
(7.157)
(7.158)
(7.159)
(7.160)

(7.161)

(7.162)

(7.163)

where I, is the modified Bessel function, and Z is the plasma dispersion

function.

Restrictions

o only the Vlasov equation was used in the construction of the dielectric
tensor, and so no collision terms were modelled, and therefore no plasma,

transport invoked

e (7.153)-(7.161) depend upon Maxwellian equilibria for both ions and

electrons, with no equilibrium streaming of any species
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e the results apply only to non-relativistic dynamics
e an isotropic temperature is assumed for all species
e there is no equilibrium electric field present

Using (7.149), (7.152) and (7.153)-(7.161) a generalised dispersion relation
can be constructed for waves propagating parallel to, and perpendicular to,
the equilibrium magnetic field. Particular examples of these waves are quoted
in the following two sections:

7.4.4.1 Parallel Propagation

longitudinal modes Here set ki = 0, which simplifies the dielectric tensor
components (7.153)-(7.161), since now only non-zero contributions arise from
the terms involving I (0). The dispersion relation for the case E, # 0 reduces
to the longitudinal electrostatic oscillations for an unmagnetised plasma (see
Sections 7.4.2 and 7.4.3).

transverse modes The waves that have E, = 0 are transverse electromagnetic
modes, with special dispersion relations according to frequency range:

Alfvén waves A low frequency mode, |w| € w,; with dispersion relation

w=wp +iw; (7.164)

kyc?

2 1% 1
wr = g yE (7.165)
b= (1 ) exp (- T W (7.166)

t |kya; @ 2kpT; w? :

Generally, Alfvén waves are weakly damped for low frequencies.

whistler waves At intermediate frequencies, we; € w <K wee, the real fre-
quency wy is given by the cold plasma relation (7.66), with the damping term
given by

2 2
n—— P (14 w?)” _MeWge 7,167
S T @kpTymay 7 (RIS o) e | =5 worky) )
which is again weakly damped, except for very short wavelengths such that

mew?,

STt ™ 1 (7.168)
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cyclotron waves For high frequency waves near wc,, then the dispersion rela-
tion takes the local form

2 2 2 mec? 1 2 Me(w — wce)z

a~ Y gl T 7.16!
w* m ket -1 (27rkBT2> Wpe €XD 2kBTekﬁ (7.169)
Assuming that wy & wee, (7.169) can be approximated to yield

/2 2
mec2> Ype (7.170)

wmk"c—i(—

8rkpTe Wee

showing that cyclotron waves propagating parallel to the magnetic field can
be strongly damped.

7.4.4.2 Perpendicular Propagation Here set kj = 0. There are 3 distinct
types of wave mode possible.

Ordinary Mode (O-Mode) The Ordinary mode is a transverse electromagnetic
wave, with an electric field component aligned with the equilibrium magnetic
field. The dispersion relation corresponds to solutions of €, = k% c¢?/w?, and
is

K2 c? w? S In(bs)
= =1- P8 o=bs _n\7s) 171
w? Xs:we "Z W — NWes (7.171)

=—00

Where only n = 0 contributions are retained, the dispersion relation simplifies
to the cold plasma one (cf (7.68)):

k2c? w?
e w—g (7.172)

In addition (7.171) also has solutions for frequencies near the cyclotron fre-
quencies:

W R MW (7.173)
Extraordinary Mode (X-Mode) The X-mode has an electric field perpendicular

to the equilibrium magnetic field, with a small component parallel to k; hence
it is almost a purely transverse electromagnetic wave, satisfying the dispersion
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relation
wps et i 2, (bs) + 262 (I (bs) — I}, (bs))
w b, L W — NWes
wp,,e b 2 n2IL(bs)
[l Z HX_: W — NWes
w . n (Ia(bs) = L)) |
=Dt Y nie)  Tnis (7.174)
3 w ne—oo W — NWeg

In the limit of b, — 0, (7.174) recovers the cold plasma X-mode dispersion
relation (7.69).

Bernstein Modes A longitudinal mode, with E, =0, E; # 0, is another wave
solution, satisfying the dispersion relation

S MW, m b
kL—Zsz_M;; o ALY (7.175)

Bernstein modes are electrostatic waves propagating perpendicular to the
magnetic field. The solutions are separated from one another by band gaps
where no propagation is possible. There are simplifying approximations which
make (7.175) more tractable:

long wavelength or low temperature If
be <1 (7.176)

then b, can be used as an expansion parameter, revealing that the Bernstein
modes occur close to cyclotron frequencies, except for the first one:

= (W2 +w)'? (7.177)
Wy, & NWee n>2 (7.178)

very low plasma density : if

wze <, (7.179)

the Bernstein modes occur at frequencies close to cyclotron harmonics [50]:
w?=n wce(l + an) (7.180)
anp = 2—2 I,.(be) (7.181)

Note also that Bernstein modes are undamped. The existence of these narrow
band modes contradicts the cold fluid plasma theory, which has no modes
possible between the hybrid resonances (see Section 7.2.4.4).
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8.1 NOTATION

SYMBOL MEANING REF
a beam radius
B magnetic flux density
d distance between plates
e internal energy (8.126)
E electric field
Jn fractional electrostatic neutralisation
Fo mass flux through a shock (8.137)
h shock strength parameter (8.136)
Ha Hartmann number (2.38)
I Alfvén current (8.92)
Iy fundamental current in I4 (8.95)
J current density
K generalized beam perveance (8.99)
mg mass of particle of species s
M Mach number (2.42)
14 gas pressure
Q ionization rate
Rp pressure ratio across a shock front (8.129)
Ry density ratio across a shock front (8.130)
(7] bulk or mean velocity
v polytropic index
T, fluid circulation (8.5)
n fluid plasma resistivity
Ny plasma viscosity
vp Budker parameter (8.87)
p mass density of single-fluid plasma (7.80)
o;j square of sound over Alfvén speed on either side of shock (8.132)
bi ionization potential
wp circular plasma frequency (2.6)
w fluid vorticity (8.6)

8.2 FUNDAMENTAL RESULTS

8.2.1 Alfvén's Theorem

In a perfectly conducting plasma, the magnetic field lines are transported with
any transverse motion of the plasma; the magnetic field behaves as though
‘frozen’ into the plasma [6]. Hence for a perfectly conducting plasma, the
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magnetic flux through any closed loop following the material motion remains
constant in time. This is expressed mathematically as

%’+u-V@=}{(E+uxB)dz 1) @®.1)
= }[(E+ u x B/c)dl (cgs) (8.2)
=0 ifn=0 (8.3)

Consequently, all the fluid particles which initially lie on a particular field line
continue to do so.
8.2.2 Cowling’s Anti-Dynamo Theorem

A steady axisymmetric magnetic field configuration cannot be self-maintained
by the current it induces in a plasma undergoing steady motion about the axis
of symmetry [25], [26]. In other words, no steady, axially symmetric dynamo
is possible [8].

8.2.3 Ferraro’s Law of Isorotation

Consider an axisymmetric steady MHD plasma flow in cylindrical co-ordinates,
in which the azimuthal component of magnetic field is zero and the plasma
resistivity is a constant. Then the local angular velocity of a fluid element
does not vary along a field line; in other words, the fluid at all points on a
field line rotates about the axis at a uniform angular velocity Q, = ug/r:

(B-V)Q, =0 (8.4)
where ug is the azimuthal component of the plasma velocity. This result holds
for finite resistivity plasmas.

8.2.4 Kelvin's Vorticity Theorem

The circulation I'; round a closed loop moving with the fluid is defined as

.= }{u -di (8.5)
It is related to the fluid vorticity w,
w=Vxu (8.6)

r.= //w~da (8.7)

by
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where the integration is taken across any surface spanning the loop. If ', =0
around all loops, then w = 0 everywhere, and vice-versa (provided that the
fluid domain is simply connected, that is, there are no obstacles that exclude
the plasma from a finite region).

Kelvin’s theorem states that the rate of change of I, is zero only if the
force per unit mass is irrotational:

e+ V= [[Vx(F/p)-da (8.8)

where F is the body force, p is the fluid mass-density, and the integration is
once more taken across any surface spanning the loop.

8.3 HYDROMAGNETIC FLOWS

The hydromagnetic Navier-Stokes equation is the momentum equation for a
viscous magnetofluid:

8
p (a—’t‘ +u- Vu) =-Vp+Jx B+ %”V(Vﬂz) +m,V2u  (SD) (8.9)

o 1
p (_u +u- Vu) =-Vp+ EJ x B+ %"V(V cu)+n,Viu (cgs)

ot
(8.10)
where the viscosity 7, is assumed constant.
Taken together with the density equation,
op
T V - (pu) (8.11)
and the reduced Maxwell equations,
8B
VX E= ~a (S1) (8.12)
190B
E=--—
V x P (cgs) (8.13)
V x B = pod (ST) (8.14)
4
VxB= %J (cgs) (8.15)
E+uxB=nJ (SI) (8.16)
E+uxBlc=nJ (cgs) (8.17)

these relations form a complete set for the study of hydromagnetic flows.
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The curl of the Navier-Stokes equation (8.9) yields the relation for the
evolution of vorticity in an incompressible, uniform density magnetofluid:

%+(u-V)w—w-Vu=Vx (J x B/p) (1) (8.18)

=V x (J x B/(cp)) (cgs) (8.19)

The term w - Vu is referred to as the vorticity stretching term [84].

8.3.1 Hartmann Flow

The steady (that is, time independent) flow of a magnetofluid along a duct
of constant rectangular cross-section across a uniform applied magnetic field
is termed Hartmann Flow. In cartesian co-ordinates, take the duct height to
be 2d,(that is, —d < z < d), and assume that its width (y-direction) W > d
and length (in x-direction) L > d permit the problem to be treated as a
1-dimensional flow between two infinite parallel plates.

Assume a flow u in the x-direction along the duct, with an applied magnetic
field By in the z-direction. Then we have

u = Xu(z) (8.20)
B=%xB,+2B (8.21)
E=3E (8.22)
J=3J, (8.23)
;)
=P (8.24)

where Eg and pgo are constants. The boundary conditions are
u(xd) =0 (8.25)

The solution for the flow in the channel is given by

+ BoEy cosh(Hqz/d
u(z) = d?22 7],,7'23 /n [1— CO(Sh;{n/ )] (SD) (8.26)
Pz0 + BoEo/(cn) cosh(Haz/d)
=4 nH?2 1- cosh;{a (cgs) 8.27)
The Hartmann number, H,, is defined by

Bod

o= (_771‘70)_1/5 E)) (8.28)
v

Bod
o= W (cgs) (8.29)

v
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and @ is the mean speed:

d
i= ;_d/du(z')dzl (8.30)
= 3vp, (1 + i"E") (Mo —tanhH,)  (SI) (8-31)
077
— BoEo —_
= 3up, (1 + CPom) (Ho —tanh H,) (cgs) (8.32)

in which vp, is the mean speed for Poiseuille flow in the same rectangular
cross-section duct:

d2p::0
= 8.33
VPo 300 ( )
The current density in the duct is
Jy =n(Eo — uBy) (ST) (8-34)
=1n(Eo —uBo/c)  (cgs) (8.35)
with a mean current density given by
_ 1 [@
== Jyd 8.36
2 /_ a ydz ( )
1
= E(Eo — @By) (SI) (8.37)
1 =
= E(Eo —aBy/c) (cgs) (8.38)
The induced magnetic field is given by
Hod (Pao + BoJ) ltopzol
=== 7/ 1 8.39
B, Bosinh 7, sinh (Hqz/d) — (SI) (8.39)
4Ard (Cpxo + Bo.]—) AT pLoz
— / —_— 8.40
B, = T e sinh (Haz/d) - T (eg)  (840)
Finally, the pressure in the duct is
2
p(z,z) = constant — pyoz — B, (S1) (8.41)
2p0
B
= constant — pyoz — e (cgs) (8.42)

The significance of these results lies in the sign of the mean current density.
If JBy < 0 then fluid flow is opposed by magnetic forces, and electrical power
is extracted from the fluid (the MHD generator); conversely, if JBy > 0 then
the fluid is accelerated by the magnetic forces (the plasma pump).
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8.3.2 Couette Flow

The flow between two parallel plates, one of which is moving with respect
to the other, is termed Couette flow. The problem is very similar to the
Hartmann flow problem of 8.3.1, and so the same geometry and notation
is used here, but since the flow is induced by the viscous drag of the plate
at z = +d moving with speed uo in the x-direction, the velocity boundary
conditions for the flow are

u(—d)=0 (8.43)
u(+d) = ug (8.44)
The solution for the flow speed between the plates is then
sinh (Hq2/d) + 2& sinh (H,2/(2d)) sinh [Ho(1 — z/(2d))]

uE) = UG Gy T 2B, cosh Hg (8D
(8.45)

_ sinh (Haz/d) _ B sinh (Haz/(2d)) sinh [Ha(1 — 2/ (2d))]
T @) T2 B, cosh s (cgs)
(8.46)

8.3.3 Field-Aligned Flows

The equations governing an incompressible, viscous, resistive MHD plasma
are as follows [15, 48, 84]:

Vou=0 (8.47)
u-Vp=0 (8.48)
p ({;—: +(u- V)u) =-Vp+J x B+n,Vu (SI)  (8.49)
=-Vp+J x B/c+n,Vu (cgs)  (8-50)

8B

S =Vx@xB)-Vx@VxB) ()  (851)

=V x (ux B)—-cVx (nV x B) (cgs)  (8.52)

where (8.47) ensures incompressibility and (8.48) requires the density to be
constant on a streamline.
Taking the magnetic field to be aligned with the velocity field,

B =)\u (8.53)
for some scalar function A yields immediately

u-VA=0 (8.54)
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that is, A must be a constant on a streamline.
Then any steady field aligned flow must satisfy [48]

Vx(nVxB)=0 (8.55)

In addition, the equation of motion for steady flows yields
pu-u=-Vp+n,Vu (8.56)

where

p=p=X/uo (8T) (8.57)
=p—X*/(4m) (cgs) (8.58)
p=p+Nu?/(2m)  (SI) (8.59)
=p+ \2?/(87) (cgs) (8.60)

are the modified mass density and pressure. Note that since (8.56) is analogous
to the form of Navier-Stokes equation for incompressible hydrodynamics, a
perfect analogy depends upon solving (8.55) in a manner compatible with
hydrodynamics.

8.3.3.1 m, X Constant: Here, the flow is potential, satisfying

u=-V¢ (8.61)
B=-)\V¢ (8.62)
V=0 (8.63)

where ¢ is the velocity potential for steady, incompressible and irrotational
flow. Hence an arbitrary potential flow of a viscous, incompressible fluid in
the absence of a magnetic field provides a solution to an MHD parallel steady
flow, if  and X are constants.

Note also that in the steady flow for constant density p,

VX Wwxu)=p {;—L:+(u~V)w—w-Vu]=fo (8.64)

where F is any rotational body force. The significance of p is clear from (8.64)
and (8.18), since if A2/ug > p, then p < 0 and the fluid vorticity increases
in the opposite direction to the rotationality of F, an effect termed negative
inertia [84].

Certain special cases are discussed in the following sub-sections; a more
general treatment can be found in [38], and the references therein.

8332 m = 0 For a perfectly conducting plasma, (8.55) is automatically
solved in field-aligned flows. Given that (8.48) and (8.54) hold, then any
classical hydrodynamical potential flow for which j is constant everywhere
can be mapped to an incompressible ideal MHD flow, which is not current-
free if ) is not a constant.
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8.3.3.3 Inviscid Flows 1In the particular case of 7, = 0, Bernoulli’s equation
holds along a streamline:

S S
pu +p—2pu + p = constant (8.65)

N =

8.4 SOLAR WIND

Classical solutions to the solar wind are strictly hydrodynamical in nature, or
equivalently force-free, in that the magnetic force term J x B does not enter
into the equilibrium equations. The basic classical model of dynamical equi-
librium is due to Parker, which assumes an isothermal, spherically symmetric
wind, for which the velocity u = fu is given by

(M?—1) —In (M?) =4In (TL) + XMo (1 - l) (8.66)

2
3 uy \r T

where M = u/cy, is the Mach number, ¢y, is the (constant) gas sound speed,
G is the gravitational constant, and M is the solar mass. The parameter r,
is the distance at which the wind speed becomes supersonic, that is, M = 1.
This critical point may be inverted to yield the temperature:

GMe

Te

T mpdkp < 6 x 10°K (8.67)

Note that the Parker model has several restrictions which are not appropriate
to the solar wind:

e the wind is isothermal, which is in conflict with the actual measure-
ments;

e the wind is spherically symmetric, which is not true;

e the magnetic field plays no part in determining the equilibrium.

Extensions to the theoretical and numerical modelling addressing the above
points are discussed in [14, 56, 73]. Typical data for the solar wind [56]
are given in Table 8.2, in which solar parameters and energy densities are
compared at various positions in the solar wind. The quantities are defined



126 FLOWS

as follows:

E, = ;p®

ET = %nkBT

Eg=GMp/r

Ey = B?/(20)
— B*/(8m)

solar wind particle number density
solar wind mass density

distance from sun

solar radius

electron number density

solar wind gas temperature

solar wind magnetic flux density
solar wind bulk gas speed

kinetic energy density

thermal energy density
gravitational potential energy dens:
magnetic energy density, SI
magnetic energy density, cgs

ity

(8.68)
(8.69)
(8.70)
(8.71)
(8.72)

Table 8.2 Average quiet sun conditions in the solar equatorial plane, reproduced from
[56] with permission See text for symbol key

r/Re | 103 15 3 5 10 215 (1AU)
ne/m™3 2x 10" 2x10" 4x10'" 4x10° 4x10° 7x108
ne/cm™3 2x 105 2x107 4x10° 4x10* 4x10° 7
T/K 2x10° 1x10° 7x10° 5x10° 4x10° 4x10°
B/T 107 4x1075  107° 4x107% 1076  3x107°
B/Gauss 1 04 0.1 0.04 001 3x107°
v/kms™! 0.6 3 34 130 280 360
Ey/Jm™3 4x10* 8x10* 2x10° 3x10° 2x10° 5x10?
E,/eVen™® | 4x10° 8x10° 2x10° 3x10® 2x108 5x10°
Er/Im~? 9x10° 4x10° 7x10® 5x10°5 4x10* 7
ErfeVem™ | 9x 10 4x10° 7x10" 5x10° 4x10° 70
Ep/Im™8 3x10° 5x10° 3x107 4x10% 3x10° 2
Ep/eVem™ | 3x 10" 5x10° 3x10° 4x10"7 3x10° 20
Eg/Im™3 4x10'° 2x10° 3x107 10° 8 x 10 6
EgfeVem™ | 4x 10" 2x10° 3x 108 107 8 x 10° 60
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8.5 NEUTRAL GAS/MAGNETIZED PLASMA FLOWS

A stationary magnetized plasma can be accelerated by a moving neutral gas
if the speed of the latter exceeds the Alfvén critical speed v, for ionization
[7, 55, 65] (see also Section 3.5.2), given by
Imav? = e; (8.73)

where m,, is the neutral gas particle mass, and ¢; its ionization potential.

The neutral gas passes through an initially stationary magnetized plasma,
becoming ionized as it does so. The newly created ions and electrons then
become part of the plasma component, adding momentum characteristic of
the neutral gas to the plasma. The latter then begins to accelerate, reaching
a terminal velocity.

For the one-dimensional treatment in which the neutral gas and plasma
have velocities in the z-direction, and the magnetic field lies in the y-direction,
the appropriate steady-state magnetofluid equations are [65]

a2

3 (V) = Qnemn (8.74)
v ap | .

P = "os +%-J X B—n.Qmu(v—uvy) (SI)  (8.75)
=- g—: +% -J x B/c—n.Qmn(v—v,) (cgs) (8.76)
I (36%) + 30 = Qnellma(v —a)? b ®7)
E+vxB=(J xB-Vp,)/(nee) Sl (8.78)
= Qneima(v — vn)? — edi] (8.79)
E+vxBfc=(J x B/c—Vp.)/(nee) (cgs) (8.80)

where: p &~ n,my, is the plasma mass density; v = X v is the plasma velocity;
@ is the ionization rate; n. the electron number density; p the total plasma
pressure; p, the electron pressure; J, B the current density and magnetic
field, respectively; v, = X v, the neutral gas velocity; and pc®v/2 the plasma
thermal energy, such that p = (y — 1)pc?/2 where v = 5/3 is the adiabatic
index.

For the case where the plasma speed is small at £ = —o0, and increases
monotonically with z, then v — v_ as  — oo such that
y+1 Uy — V-
— v -—Q |5 8.81
lv—v Iocexp[ 2 R (8.81)
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where

b=yt (2-1)3’é+1% (8.82)
+ = T+l Y Y w2 -
where c,, c;p, are the Alfvén and plasma thermal speeds respectively.
The condition that ionization does not cease before the terminal speed is
reached places the following constraint on the neutral gas speed:
3y—-1
T
2yv(v-1))2
That is, the neutral gas speed must be approximately twice the Alfvén critical
speed.
Note that in the limit of very large neutral gas speeds,

Up > v ~ 1.8v, (8.83)

v 11

ks | (8.84)

similar to the condition prevailing for strong shocks (see Section 8.7.3.1).

8.6 BEAMS

A plasma beam [54] is a directed stream of charged particles in which the indi-
vidual particle motion makes a small angle with the beam axis, and in which
the thermal spread in energy of the particles is small compared to their total
energy. The motion of particles in a beam depends on the applied external
fields, and also on the self-field arising from collective plasma effects. Inter-
actions between beam particles can take two forms: (i) a space-charge force,
which creates long-range electric fields and is independent of the particulate
nature of the beam; and (ii) short-range collisional forces, in which beam
particles interact directly with one another, and also with any background
particles.

It is assumed that the beam is sufficiently dense that collective effects are
significant. A laminar beam is one in which the velocity distribution at a
point is single valued.

8.6.1 Beam Parameters

8.6.1.1 Relativistic Factors The notation 8, and v, will denote the relativis-
tic parameters
By = (8.85)

v
c
mw=1-p)""" (8.86)
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where v is the speed of a beam particle. In general, 8, and v, are functions
of position within the beam.

8.6.1.2 Budker Parameter The Budker parameter vp is the product of the
number N of charged particles per unit length of a beam, and the classical
radius of the particle [54]:

~ N¢?
‘B = m (SI) (8.87)
_ N¢
vg = e (cgs) (8.88)

where ¢ is the charge on the particle, and my is the particle rest mass.
If the beam is spatially uniform, with constant number density n,

a?w?

vg = 4c;’ (8.89)

where a is the beam radius, v is the relativistic factor, and wj is the plasma
frequency of the (relativistic) beam, given by

2 _ ng*
W= e (8D (8.90)
_ 4mng?
= m (cgs) (8.91)

8.6.1.3 Neutralization The neutralization of charged particle beams by par-
ticles of the opposite sign is a practical feature of all beams, usually achieved
by the ionisation of any residual gas in the vacuum system, or by particles
in the background plasma. The fraction of beam particles neutralized in this
way will be denoted f,; in general, f, is a function of position along the beam.

8.6.1.4 Alfvén Current The maximum current possible in a collimated cylin-
drical charged particle beam under the influence of its own magnetic field is
given by the Alfvén current [5]

Ia= Mﬂu% S (8.92)
In= "““3% (cgs) (8.93)

where the particles have rest mass mg and carry charge g.

Restrictions

e the current density is uniform across the beam
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e the particles are mono-energetic and identical

e perfect charge neutralization is provided by oppositely charged static
background particles co-spatial with the beam

o the beam therefore has a self magnetic field, but has a constant electric
potential throughout

For electrons, (8.92) may be approximated as

Ix=IDBuve (8.94)

where
Ip ~ 17kA (ST (8.95)
~ 51 x 10" statamp  (cgs) (8.96)

Electron beams with currents in excess of I4 produce electron trajectories
with a drift in the opposite direction to the current, because of the particular
form of the magnetic field under these assumptions. In this way, the excess
current is either cancelled, or the beam becomes immediately unstable.

An alternative formulation [53] defines I4 by equating the electron Larmor
radius for the maximum self magnetic field to the beam radius. Generalizing
this to include fractional neutralization only, and assuming a uniform, mono-
energetic electron beam, then the current limit can be written as

_ ﬂg')’v

Ia Ioﬂ% ) (8.97)
where f, is the fractional electrostatic neutralization. This admits arbitrarily
large currents in a uniform beam for f, ~1— 2.
If in addition to partial electrostatic neutralization, there is also partial
magnetic neutralization, where large numbers of the background electrons
drift in the opposite direction to the beam current producing a partial can-

cellation of the beam’s magnetic field, then I4 can be modified to [40]

B

ﬂ%(l - fm) - (1 - fn)
where f,, is the fractional magnetic neutralization.

Further treatment of this problem [13, 40] shows that I4 can be exceeded
in three ways: (i) if the current density is concentrated near the edge of the
beam, so that beam electrons leave the high magnetic field regions before
being turned back on themselves; (ii) if the beam propagates into a high
density background plasma, in which plasma currents can be induced which
cancel the beam’s self-field; and (iii) if a strong axial magnetic guide field B,
is added to the beam in order to limit the radial excursion of beam electrons,

such that By > |Bmaz|(1 — 02 — fn)/ 82, where Byoq is the peak self-field of
the beam.

Ii=I (8.98)
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8.6.1.5 Generalized Perveance The generalized perveance K is the dimen-
sionless net radial force acting on particles in a uniform cylindrical beam with
zero externally applied fields, and is defined by

21/5

K= (1-82—fa) (8.99)

If f < ;2 (that is, K > 0) the beam spreads radially; if f > ;2 (that is,
K < 0) the beam pinches radially inwards.

8.6.2 Special Cases

8.6.2.1 Cylindrical Beam with Zero Applied Magnetic Field A uniform parallel
beam of particles is injected into a field-free space.

Restrictions
e the beam is laminar, and collisionless

e the beam is partially charge neutralized by a fraction f of oppositely
charged particles with negligible axial motion

e only self-fields are present
e there is no variation with axial co-ordinate

If the current is vanishingly small, the beam continues as a perfect cylinder,
since the self-fields are negligible.
For non-trivial beam current, the only forces acting on the beam particles
are purely radial, such that
o
dz?
where r is the radial co-ordinate of a beam particle, z is the axial co-ordinate,
and K is the generalized beam perveance (8.99) which quantifies the compe-
tition between the outward electric field and the inward magnetic pinch. As a
result, additional focusing or defocusing of the beam will occur according as to
whether K < 0 or K > 0. If K = —2 then the beam is magnetically pinched
so that the radius of curvature of beam-edge particles is equal to the beam
radius. As a consequence, the beam carries the maximum possible current, ie
I=1I4.
The solution to (8.101) can be written [54]

2 gz Y n(r/e0) exp(u?)du K >0
w0 V n ®102
JY ol exp(—u?)du K <0

K (8.101)
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where ag is that radius at which dr/dz =0.

8.6.2.2 Cylindrical Beam in Infinite Magnetic Field The infinite magnetic field
serves to suppress all transverse motion of the beam particles.

Restrictions

there is no transverse motion of the particles

the beam is laminar, and collisionless

the self magnetic field is irrelevant

the beam has circular symmetry, with radius a

there is no variation with axial co-ordinate

beam particles each have the same rest mass mq and carry charge ¢

the beam is perfectly neutralized overall, although the charge balance is
provided external to the beam, so that there is a net electric potential
associated with it

the beam carries a total current I, and possesses a line charge density
N, defined below

I= / ‘ 2mgrn(r)By(r)edr, (8.103)
0

N = /Oa 2nrn(r)dr. (8.104)

The electric field associated with the beam is purely radial, arising from the
beam charge density:

-
2 r'n(r)dr’ r<a (SI)
€oT Jo
4 T
e r'n()dr’ r<a (cgs)

E,.= 0 8.1

’ Ng >a (SI) o1

2megr r= (
2N,
ale r2a o)

The beam potential ¢ can be defined by

99(a) + (v(a) — Imoc® = 0 (8.106)
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which sets the zero of potential such that electric potential energy of a particle
at the beam edge balances the particle’s kinetic energy there. In this way, the
particle energy as a function of radius can be determined:

(10 — Dmoc® = (1o(a) — Dmoc® — g / ’ E.(r')ar’ (8.107)

Uniform Current Density For the simple case of uniform current density, that
is,

n(r)By(r) = constant (8.108)
I
= g (8.109)
it is possible to define the particle speed as a function of radius in the following
way:
1d dy) _ ql
rdr (T dr ) ~ maZegmoc By (D (8.110)
4qI
= FEmechy (cgs) (8.111)

There are two special cases which admit simple solutions to (8.110):

1. Non-Relativistic Particles Using (8.107) and (8.105) yields

_ 9qI 13 \2/3
Aulr) = (87rEOm0c3) (5) (sD) (8.112)
1/3 /
= (2:):023) (:‘,)2 BT (8.113)
vn = 50,(a) (8.114)

In this solution the particles have low velocities near the axis, but large number
densities. Hence such particles do not contribute greatly to the current, but
do have a significant effect in determining the potential difference between the
beam centre and edge.

2. Ultra-Relativistic Particles In this situation, v,(a) > 1, so that for all the
charges except those very close to the beam axis, 3, ~ 1, and almost totally
independent of radius. This has the consequence

vp & Y(a) (8.115)
and so the current in the beam is approximately the Alfvén current:

I~y (8.116)
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8.7 HYDROMAGNETIC SHOCKS

A shock is the transition between two different uniform gas states, though
in practice, the gas behind the shock is not uniform. Hydromagnetic shocks
have been extensively reviewed in [11, 83], and summarised for example in [15,
98, 73]. This section is concerned with plane shocks moving in the direction
normal to the plane, in which the hydromagnetic equations (see Section 8.3)
are valid on either side of the shock (but not actually inside the shock itself).
Region 1 is the undisturbed, static region ahead of the shock, and Region 2 is
the shocked region behind the shock; subscripts 1 and 2 will identify quantities
ahead and behind the shock, respectively.
The notation

[Q]=Q:-Q: (8.117)

denotes the jump in the value of a quantity Q on either side of the shock.

In order to simplify the algebra, the equations are formulated in the rest
frame of the shock, with a unit vector fi orthogonal to the shock plane, point-
ing in the direction of the shock propagation. Hence in all the following
analysis,

U =Xy (8.118)

so that the shock is propagating along the z-axis, and the unshocked material
is assumed to be at rest. The transverse direction will be taken to be the
y-direction. Then the hydromagnetic jump conditions are

[a-B]=0 (8.119)
[Ax(uxB)]=0 (8120)
[ph-u]=0 (8.121)

[lp(a - w)u + fa(p + B%/(20)) — (& - B)B/uo]] =0 (SI)
(8.122)

([p(a-w)u + f(p+ B*/(87)) — (- B)B/(4m)] =0 (cgs)
(8.123)

[(A-u) (pe + Lpu® + p+ B?/po) — (- B)(B - u)/po]] =0 (SI)
(8.124)

[ - u) (pe+ spu® +p+ B>/(47)) — (- B)(B -w)/(4n)]] =0 (cgs)
(8.125)

where p is the mass density, w is the hydromagnetic fluid velocity in the shock
rest frame, B is the magnetic field, p is the scalar hydromagnetic pressure,
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and e is the internal energy, defined by

_ p
e= G-1p (8.126)

where 1 < 7 < 2 is the polytropic (or adiabatic) index. Note in particular
that (8.119) demands continuity of the normal magnetic field component in
all shocks. Expressions (8.119)-(8.125) are the generalisations of the Rankine-
Hugoniot relations for hydrodynamical shocks. An alternative form of (8.124)
is

[e] + $(p1 + p2) [1/6) + [BI [1/6] /(40) =0 (SD) (8.127)
[el + 5(p1 +p2) [1/p) + [BF [1/6) /(167) = 0 (cgs) (8.128)
Note, from (8.119), that the normal component of the magnetic field is con-

tinuous, and from (8.121), that the mass flux through the shock is also con-
tinuous.

8.7.1 Further Notation

Introduce the ratios R, and R, which are defined as

R, =22 (8.129)
D

R, =22 (8.130)
P1

and define the angle 8;, j = 1,2 between the magnetic field direction and the
shock propagation direction as

B.
sinf; =24, j=1,2 (8.131)
J

so that §; = 0 refers to a magnetic field which is parallel to n. Note that a
shock is compressive if R, > 1, non-compressive if R, = 1 and expansive if
R, < 1.

The ratio 0,5 = 1,2 of the square of the sound to Alfvén speeds on either
side of the shock front is given by

aj=%ff j=12 (S (8.132)
J

_ 4myp;

= B_j2 (cgs) (8.133)
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The reduced Alfvén speed «;,j = 1,2 in the shock propagation direction is
defined as

2\ 1/2
o = (—BL) ,i=1,2, B,=n-B (S1) (8.134)
Hopj
B,,Z., 1/2
= .1
( 4Mj) (cgs) (8.135)

The shock strength parameter h is a measure of the discontinuity in the trans-
verse magnetic field, and is defined by
oo 18]
1

5 (8.136)

where B is the magnitude of the total magnetic field in the unshocked region.
Finally, the mass flux through the shock is denoted F,, and defined by
Fo=lpunl, up=t-u (8.137)
Note that the mass flux is directed oppositely to .

8.7.2 Shock Classification

Following [11] we classify shocks as follows:

Contact Discontinuity Here there is no mass flow through the shock front.
There are two subdivisions:

fi- B = 0: shear flow and/or magnetic contact discontinuity are possible.

i+ B # 0: neither shear flow nor magnetic contact discontinuity are possi-
ble.

In other words, a magnetic discontinuity or a shear flow discontinuity are
only permitted if the magnetic field normal to the surface of discontinuity
vanishes.

Non-compressive Shocks  Also known as the Transverse Alfvén Shock and the
Intermediate shock, this non-trivial solution for the case [p] = 0 yields

[a-u]=0 (8.138)
[Pl=0 (8.139)
[usr] = sgn(n - B) [By,] (8.140)

where uy = u — 0( - u), with By, defined similarly, and where the signum
function sgn is defined as follows:
-1 z<0,
sgn(z) =40 =0, (8.141)
1 x>0
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In fact this solution corresponds to the passage of a large, finite amplitude
Alfvén wave, and so is not really a true shock at all.

Fast Magnetic Shocks B2y > By, > 0, i- By > 0.  These shocks are

compressive, and can be subdivided into 2 further classes:

Type 1: o >1-

7 Csin?6y FM1 (8.142)

Type2 o3 <1——2 Tsin’6; FM2 (8.143)

Slow Magnetic Shocks Bay < Bi,y, B1,y > 0, i- B > 0. These shocks are
compressive, and can be subdivided into 2 further classes:

Type 1: g1 >1—ysin?8; SM1 (8.144)

Type 2: g1 <1—ysin?6; SM2 (8.145)

The limits 6; — 0 and #; — /2 are special cases:

Parallel Shocks 6; =+ 0, By y = 0, 01- B> 0

FM1 a>1 Fast pure gas shock (8.146)
FM2 <1 Switch-on shock, fast gas shock (8.147)
SM1  o0;>1  Continuous transition (8.148)
SM2 o<1 Switch-on shock, slow gas shock (8.149)

Perpendicular Shocks 6; — ©/2, i - B — 0 Note that only Type 1 shocks
persist here, since ¢ has to be positive, and therefore the Type 2 constraint
is not physically meaningful in this limit.

FM1 01> 0  Perpendicular shock (8.150)
SM1  0;>0  Contact discontinuity (8.151)

8.7.3 Shock Propagation Parallel to B,

There are two special cases for parallel propagation:
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8.7.3.1 Fast Pure Gas Shock (FM1) The magnetic field has no effect, o1 > 1,

and the jump conditions yield (eventually)

[u] =0
[B]=0
i[lmn]l =0

R,—1
142y— 2~
[ b ey o v
D1
A I 4 S—
-G -D®R, - 1)
where o; > 1 and

<'y+1

1<R, < T

(8.152)
(8.153)
(8.154)

(8.155)

(8.156)

(8.157)

Note that this is termed a fast shock because un; > a; for all permitted

values of R, as defined in (8.157), given that gy > 1.

8.7.3.2 Switch-On Shock (FM2) The solution here is a combination of a fast
gas shock and a magnetic shock, such that o1 < 1. The jump conditions yield

(eventually)

By’ =2B}(R, = 1) [l — 01 — L(y = 1)(R, — 1)]

funl = o (R - R;1/2)

B, ——B
|[uy]|—a2B——a 1R Bl”

Fp=proa
y-1
Rp=1+7R,-1) |1+ — (R, - 1)
201
where this solution is valid in the range

1+—(1 o) <R, < 1L
Y- y-1

or equivalently,

ol 1-01
1+42—— | —— | <
+ 7_1( o )_’R,,<oo

(8.158)

(8.159)

(8.160)
(8.161)

(8.162)

(8.163)

(8.164)
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8.7.3.3 Switch-On Shock (SM2) This shock is a combination of a magnetic
shock and a slow gas shock. Again, o7 < 1, with the gas contribution being
as given in Section 8.7.3.1, but with the restriction

1—0‘1

1<R,<1+2 (8.165)

The magnetic contribution is as given in Section 8.7.3.2, with the only dif-
ference being that the ‘switched on’ tangential magnetic component is in the
opposite direction to that in Section 8.7.3.2.

8.7.4 Shock Propagation Perpendicular to B,

Here the magnetic field is perpendicular to the direction of propagation of the
shock. Solutions here are necessarily of Type 1 only. Recall from (8.119) that
there can be no magnetic field component normal to the shock plane.

8.7.4.1 Perpendicular Shock (FM1) The jump conditions yield
Byy

==Y 8.166
"= By, ( )
[uy] =0 (8.167)
/2

B 1+al+§(2—'y)7€p]‘ V2 g1

[tn] = ca1 [1 I -0®, -1 (R,, -R; ) (8.168)
1/2
Un  Ca [l+or+3(2— 'Y)Rp]
R el el PN 8.169)
"7 R, Ry [1—%(7—1)(73,7—1) ¢
1+ (v - )R} /(dan)
—149R, o/ 201) 8.170
R ToIG-D(R, =) G170
where the validity of these results demands
y+1
<17 .
1<7€,,_7_1 (8.171)
and moreover

Unt > (¢ +cBy)/? (8.172)
Uny < (¢ + chra) /? (8173)

The symbols caj,cthj, J = 1,2 denote the Alfvén and thermal speeds ahead
of, and behind, the shock front, respectively.
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8.7.4.2 Contact Discontinuity 'This 6; = m/2 limit of the SM1 shock is a
contact discontinuity, in which

F,= (8.174)
B? S
+—|| =0 1) 8.175
3] -0 o @17)
BZ
[[p+ -g;r—” =0 (cgs) (8-176)
p2 (3= Byy/B1)(Byy/B1 — 1)
= =1+ 8.177
o= 2 5 (1= 1) (Bay /By ) @17
[uy] = —01(2 — Bay /By — 1)(B2y /By — 1) x
[ 21+0) +(y=2)(By/Bi-1) | 6178)
201 + (v — 1)(Bgy/B1 — 1) — (Bay/B1 — 1)? !
8.7.5 General Case: Fast Magnetic Shocks
h>0, 0<6,<m/2
The shock is described by
Clnhsing — (1 — 1/2
B syhsinfy —(1—01) =R
Ry =1+ b~ Th (8.179)
R= hz(%"(2 sin?8; +1—7) + k(2 —~)(1 + 01) sinb;
+4015in%60; + (1 —0y)? (8-180)
Yh[ 4 (R, —1)/h —sinb,
14+ |1y M T /AT ST
Rp=1+ [ 2t I snd, (R, —D)/h (8.181)
ha R,—1 . 1/?
fwl = ;1 [1 - Ph sm01] (8-182)
[un] = ea Rp—1 (8.183)

[1- (R, — 1)/hsin6,]'/
Class 1 shocks (FM1) depend only on the ‘+’ sign in (8.179), and satisfy

n>1-—2 < sin’ 6y (8.184)

sin 6,
y-1

0<h<?2 (8.185)
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Class 2 shocks (FM2) have both branches of (8.179) present, and satisfy

o < —

5 u < sin®6; (8.186)
with the ‘+’ branch yielding part of the total solution when h satisfies
0<h<h* (8.187)

where

_ sinf1(2 - 7)(1+01) +2cosb; [(y = 1)(1 — 01)* + 017*sin® 01]1/2

=
2(y— 1) — 1y2sin® 6,

(8.188)

and the remaining part, from the ‘—’ branch, contributing subject to the
restriction

sin 6;
y-1

2 <h<h* (8.189)

8.7.6 General Case: Slow Magnetic Shocks

h<0, 0<6;<m/2

The shock here is described by the same relations as for the Fast Magnetic
Shock, (8.179-8.183) with —h substituted for h.

Note that in a slow magnetic shock, the magnitude of the transverse mag-
netic field behind the shock is always less than or equal to that in the un-
shocked material ahead. For this reason, these shocks are sometimes referred
to as ‘switch-off” shocks.

Class 1 shocks (SM1) are restricted to the ‘+’ roots only, with the additional
restriction that

01 >1—vsin®6; (8.190)

0> h > —2sinb; (8.191)
Class 2 shocks (SM2)

01 < 1—~sin®6; (8.192)

The solution here can depend on both branches, with the ‘+’ root admissable
provided

0>h>ht (8.193)
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where
W= —sinf; (2 — 7)(L + 01) + 2cos6; [(y — 1)(1 — 01)? + 12 sin® 6]
- 2(y — 1) — 142sin® 4,
(8.194)
and the ‘—’ branch permitted if
—2sinf; > h> At (8-195)

8.7.7 Further Reading
These results on MHD shocks can be generalised to the case where the ambient

hydromagnetic flow is not aligned with the shock propagation direction; see
[62] for details.

8.8 ION-ACOUSTIC SHOCK

A two-fluid plasma contains hot electrons, at a temperature T, and singly-
charged cold ions, such that the electrons satisfy Boltzmann statistics,

Ne = N EXP (%) (8.196)

where ng is the equilibrium ion number density (so that the plasma is electri-
cally neutral overall) and ¢ is the electric potential.
Assuming a 1-D treatment only, the ions satisfy the equations

671,' 371,‘115 _
Bt + W 0 (8.197)
31“ Va’ui . _iad)
ot i 8z  m; 0z (8.198)
62
a_xf - _é [ni ~npexp (%)] (sD (8.199)
= —dre |n; — no ex; e (cgs) 8.200)
= —4me |n; — ng exp %oT, cgs (8.

in which n; is the ion number density, m; the ion mass, and u; the ion speed
in the z-direction.

In the steady state, search for a travelling waveform solution, so that all
ion quantities can be written as functions of ¢ = z — Ut, where U will be the
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phase speed of the waveform. In this way,

u=U% (U2 - 72776 )1/2 (8.201)
i

n; = Mg (1 - ;:;’,e) o (8.202)

Putting y = e¢/(kpT.) allows (8.199) to be written as
326—3 = —-% [(l - %) o - exp(y)] (8.203)

where

N = G‘Z“O‘f @D (8.204)
= 4}:;::2 (cgs) (8.205)
M= ﬁ/m (8.206)

Demanding dy/d¢ — 0 as y — 0 allows (8.203) to be written in the form
dy\* 1 [, e 2\ 2
1 (d_§> =% [M (1 bl +exp(y) —M? —1 (8.207)
Bounded and localised solutions of (8.207) require
1< M2 <256 (8.208)
corresponding to that range of M over which the right-hand side of (8.207)
has two roots.
If y is small, allowing the right-hand side of (8.207) or (8.203) to be ex-

panded to order y? results in a non-linear equation that has a solitary-wave
like solution of the form

y = yo cosh™>(x€) (8.209)
_ o MEME-1)
Yo = 33——/\44_ (8.210)
2 _ 1/2
o= M DT (8.211)

2ApM
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Fig. 8.1 The small-amplitude ion-acoustic shock solution y = yo cosh™2(k€).

as shown in Figure 8.1. Note that the width A of the shock can be approxi-
mated as

AR Ap—mm——e (8.212)

The full solution to (8.207) has to be obtained numerically, and can display
several static peaks and troughs in the rest-frame of the shock.

Note that the ion acoustic shock is intimately related to the formation of
plasma sheaths (see (3.5) in Section 3.2.1). In fact the ion-acoustic shock can
be considered to be a sheath travelling through the plasma. However, the
boundary conditions for a static sheath in a plasma bounded by electrodes
are different from those discussed above.
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9.1 NOTATION

SYMBOL MEANING REF

a plasma, column radius

A magnetic vector potential

B magnetic flux density

c speed of light in vacuo

Ca Alfvén speed for the plasma (2.24)
Ep Dreicer electric field (9.111)
E electric field

g acceleration due to gravity

I current

Iy modified Bessel function of order 0

I, modified Bessel function of order n

J current density

Im Bessel function of 1st kind, order m

k wave-vector
K modified Bessel function, order m

M mass of particle of species s

D gas pressure

q safety factor (9.64)

s label defining species:i (ion), e (electron), n (neutral)

T temperature of gas of species s

u fluid velocity

¥ adiabatic index

Yo growth rate

n fluid plasma resistivity

/8 plasma, viscosity

Ap Debye length (2.17)
vB Budker parameter (8.87)

p mass density of single-fluid plasma (7.80)
g square of sound over Alfvén speed on either side of shock (8.132)
TA Alfvén transit time (2.13)
TR resistive diffusion time (2.15)
i ionization potential

w wave frequency
Wes circular cyclotron frequency of species s (2.7)
wp circular plasma frequency (2.6)
w fluid vorticity (8.6)
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9.2 GENERAL CONSIDERATIONS
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An equilibrium state is one which is not evolving in time, that is, no compo-
nent of the system has an explicit time dependence. Equilibria can be station-
ary (no bulk motion) or dynamic (steady bulk motion); they can also be stable
or unstable. A stable equilibrium is a state which if perturbed produces restor-
ing forces which act to reverse the perturbation and re-establish the original
equilibrium. Unstable equilibria do not possess the requisite restoring forces,
and exhibit instability to perturbation. An instability can be defined as an
unbounded growth away from an equilibrium configuration; if a quantity be-
comes unbounded in finite time, this is referred to as an explosive instability.
A key to the common terminology follows:

type of instability

description

absolute

configuration-space

convective

electromagnetic

electrostatic

parametric

velocity-space

unbounded growth at all spatial points simul-
taneously

evolution of macroscopic quantities away from
thermal equilibrium

unbounded growth evolves as a disturbance
propagates

unbounded growth associated with accumula-
tion of current density

unbounded growth associated with uncon-
strained charge accumulation

instability provoked by the application of an
external periodic stimulus

evolution of kinetic distribution function away
from Maxwellian equilibrium

More detailed classification systems for plasma instabilities are described

in [21]

9.3 FLUID EQUILIBRIA

9.3.1

Ideal MHD

The classical stationary ideal MHD equilibrium is given by

Ug = 0
Vo = Jo x By (SD)

Vpo = Jo x By/c (cgs)

0.1)
(9.2)

(9.3)
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where subscript 0 denotes an equilibrium quantity. Immediate consequences
are
Bo-Vpp=0 9-4)
Jo-Vpo =0 (9.5)
showing that the pressure is constant along lines of magnetic field, and also
along lines of current density.
9.3.1.1 Uniform By Where the equilibrium magnetic field is spatially uni-
form, then
Jo=0 (9.6)
Ppo = constant 9.7)

9.3.1.2 General Case In general, (9.2) can be written in the form

2 .
v (m+ f—;) = BoVIBo (o 99)

If the magnetic field is unidirectional in Cartesian co-ordinates, or axial in
cylindrical co-ordinates, then (9.8) reduces to

2

Do+ B = constant (SI) (9.10)
2u0
B}

Pot g = constant (cgs) (9.11)

9.3.1.3 Force-Free Equilibrium If Jg # 0 and is parallel to By, then a force-
free equilibrium exists, in which

Jox Bg=0 (9.12)
V x By = aBg (9.13)
Po = constant (9.14)

where o characterises the equilibrium configuration. If o is a constant, then
the magnetic fields determined by (9.13) correspond to the lowest magnetic
energy states which a closed system may attain [97]. Moreover, constant o
force-free fields are a subset of a wider class of equilibria satisfying

V x (V x B)=a’B (9.15)
which have the maximum magnetic energy density for a given current den-

sity, or equivalently, have minimum magnetic dissipation for a given magnetic
energy [22], neglecting surface currents.
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9.3.1.4 Taylor Equilibria Note that the concept of force-free equilibria as
described by (9.13) may extended to resistive plasmas [91], provided that an
extra constraint is satisfied, namely the total magnetic helicity Ko of the
plasma is invariant [97]:

Kog= [ A-Bdr = constant (9.16)
Vo

where A is the magnetic vector potential, and Vp is the total plasma volume.
Under the constraint (9.16) a resistive plasma surrounded by a perfectly con-
ducting toroidal shell will relax to a minimum energy state characterised by
(9.13), where « is now directly related to the total current, the toroidal mag-
netic field and the plasma minor radius. (See [91] for detailed discussion of
such equilibria.)

9.3.2 Cylindrical Equilibria

9.3.2.1 Bennett Relation An ideal MHD cylindrical plasma, of radius @ bounded
by vacuum and carrying a total current I satisfies (9.2) in equilibrium. If the
magnetic field is the self-field arising from the plasma current, then the Ben-
nett relation states [52, 54]

P= %NekB(Te +T;) (SO 9.17)
16

= ﬁchBT (9.18)

P =2cNkg(T. + T3) (cgs) (9.19)

= 4¢*N kT (9.20)

where N, is the total number of electrons per unit axial length of the plasma
cylinder, Te, T; are the electron and ion temperatures, respectively, and T is
the plasma temperature for the equal temperature plasma case. Note that
the temperature of each species is assumed to be spatially constant, and that
the ions are singly charged.

The Bennett relation (9.17) can be expressed in the equivalent form [54]

<v?>
—g B (9.21)
’UZ ’Y?l

a?w?

3
= 9.22
4c? 022)
where < --- > denotes the average over beam radius, vg is the azimuthal

speed, v, is the axial speed, vg is the Budker parameter (8.87) and 1, is the
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relativistic factor,

1
v2 02|72
Yo = [1 - —e’?— (9.23)

Relation (9.22) holds only if the beam is spatially homogeneous, so that (8.89)
can be used.

9.3.2.2 Plasma Column Resonances An unmagnetised electrically neutral
plasma, column of radius a, containing static ions and thermal electrons char-
acterised by a scalar pressure p and associated temperature T, is surrounded
by vacuum and can be driven to resonant oscillation by absorption of electro-
magnetic radiation at specific frequencies w, given by [50]

n Jo(ka)  w?

Yo Th (ha) 2w—§ - (9.24)

where J,, is the Bessel function of order n, J}, is the derivative of J, with
respect to argument, and

o=

1 [(a w?
ko= (Ew_z - 1) (9.25)

Note that (i)(9.24) corresponds to modes for which there is no surface charge
density at the plasma-vacuum boundary, and therefore no radial current den-
sity at the boundary; (ii) 1-D adiabatic compression of the electrons is as-
sumed, so that the polytropic index v is given by v = 3.

The main resonance occurs at n = 0, yielding w = w,/+/2. Higher order
resonances occur at frequencies given by [50]

/\2
w? = w? (1 + 3a—’;x§) (9.26)

where z; ~ 5.3, 22 ~ 8.5. Further resonances can be calculated graphically
from the solution of (9.24).

9.3.2.3 Surface Waves on a Plasma Cylinder Let the unmagnetised cylin-
drical plasma of radius a be surrounded by a conducting cylinder of radius
b>a.

ised cold pl. partially filling a conducting waveguide The disper-
sion relation for azimuthally symmetric E modes (that is, waves with an axial
electric field only) is {50, 90, 92]

1- wp \ ko I(ka) _ Ij(roa) Ko(rob) — Io(kob) K (koa)
w? | k Iy(ka)  Iy(koa)Ko(kob) — Io(kob)Ko(koa)

(9.27)
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where
kg =k* —w/c? (9.28)
K=k - (- )/ (9.29)
and where the axial electric field is given by

IO(K'T) ei(kz—wt) O<r<a
B Iy(ka)
E, = (9.30)
To(kor) Ko(r0b) — To(kob) Ko(kor) ihzuty <r<b
Iy (koa)Ko(xob) — In(kob)Ko(koa)

Iy and K, are the modified Bessel functions of the first and second kind,
respectively, and ' denotes the derivative with respect to argument. These
waves propagate at less than the speed of light, and at frequencies below the
waveguide cut-off.

isolated cylinder In the limit of b>> a, (9.27) is replaced by the approximate
form
2
w, & Iy(ka)Ky(koa)
1— - — 2 20\ R0 0% .
w? ko Ij(ka)Ko(koa) ©31)
which is the dispersion relation for slow surface waves on a plasma column of
radius @ in a vacuum.

plasma filled cylinder, infinite magnetic field Where the plasma fills the cylin-
der, so that a = b, and the axial magnetic field is so large that electrons
are constrained to move parallel to the axis only, then only the E modes are
affected by the plasma, with the axial electric field given by [50, 90, 92]

E, = AJp(kor)eiFztmé=wt) (9.32)

with dispersion relation

2,2 2
k22 =Y % _ % 3
¢ 1-w2jw? (0.33)

where a,, is the vth zero of the Bessel function J,,, and
k2 = w?/E - k)1 - wZ/wz) (9.34)

satisfies the appropriate boundary condition kia = any.
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9.4 FLUID INSTABILITIES

9.4.1 Firehose Instability

In an ideal MHD plasma with a magnetic field Bo = Z By. Instead of a scalar
pressure, assume a pressure tensor in the form

pr 0 O
P=|0 p. O (9.35)
0 0 p

where p) is the pressure in the direction of the magnetic field, and p. is the
pressure in the plane perpendicular to B. Then two equations of state are
required:

p% = constant (9.36)
pL
0B constant (9.37)

The dispersion relation for waves of frequency w and wavevector k propagating
at an angle 8 to the magnetic field is

P
=—(ax .
w %0 (a£b) (9.38)
where (in SI):
a =B}/ +pLo + 2p|p cos’ 8 + pLosin® (9.39)
1/2
b= { [B2 /10 + pLo(1 —sin? ) — dpjg cos® 6‘]2 + 4pyo sin” 6 cos’ 6'}
(9.40)
In cgs units:
a =B} /(4m) + pLo + 2pjo cos® O + p o sin* 4 (9.41)
i 1/2
b= { [B3/(4m) +pio(l —sin® ) — 4p)po cos® 9}2 + 4pypo sin® f cos® 0}
(9.42)

For the particular case of propagation parallel to the magnetic field, (9.38)
has the two solutions

w?= ,,:_: (B3/uo +pro—pp)  (SI) (9.43)
5 (B3 /4m) + 20 - 1) (c89) (9.44)

w? = 35220 (9.45)
0
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Equation (9.43) shows that when pjo > B3/uo + pLo, Alfvén waves are un-
stable. The other solution (9.45) corresponds to ion sound waves propagating
along the magnetic field direction.

Physical mechanism: The pressure variation induced by the passing Alfvén
wave becomes too great for the perpendicular pressure component of the
plasma, and the restoring force falls short of that required to balance the
magnetic variation.

9.4.2 Gravitational Instability

Also known as the Rayleigh- Taylor and Kruskal-Schwarzschild instability. A
cold magnetised flowing plasma supported against gravity will become unsta-
ble in a manner analogous to Rayleigh-Taylor instability (see Figure 9.1). The
equation governing the ion equilibrium is

m; (u,-o . V)u,-o =gq;uj X Bg + m;g (SI) (946)
=giui X Bo/c+mig  (cgs) (9.47)
which yields, for constant gravity,
mi g X By
o= 1 X
Ui « B (SI) (9.48)
_migx By
"o B (cgs) (9.49)

Assuming that there is a density gradient Vng in the opposite direction to
g, and that the equilibrium flow is perpendicular to both g and B, then the
plasma is unstable to small perturbations going as exp[i(kz —wt)] propagating
along the flow direction, with a growth rate of
- ] 1/2

Yo R [_9_

e (9.50)

where ' denotes the derivative.

This instability is also known as the flute instability, in cylindrical geometry,
where the radial forces resulting from the magnetic curvature produce an
equivalent gravity (see Figure 9.2). This is a simple example of the general
class of such instabilities termed interchange instabilities, in which a magnetic
field geometry which is concave to the plasma will be unstable to flute-type
perturbations, whereas a convex magnetic field is stable.

Physical mechanism: Ion drift in the magnetised plasma due to the density
gradient produces charge separation at the perturbed interface. At the critical
wavelength, the resulting electric field creates an E x B drift which enhances
the perturbation.
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Fig. 9.1 Diagram showing the evolution of the charge separation under the gravita-
tional instability. The resulting electric field can interact with the magnetic field to
enhance the distortion, if the wave-length is right for correct phasing of the E x B
drift.

Fig. 9.2 Diagram showing a flute instability of a cylindrical plasma.
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9.4.3 Kelvin-Helmholtz Instability

The inviscid and incompressible flow of two horizontal infinite streams of
ideal MHD plasma with a common horizontal plane interface perpendicular
to the gravitational field g is unstable to interfacial perturbations going as
exp[i(kz — wt)], where z is the co-ordinate along the interface.

Let the density and speed of the lower plasma stream be p; and u;, and
those of the upper be ps and ug, where u; and u, are directed parallel to the
interface. Then the dispersion relation for interfacial waves is [98]

1+ p2 ¢k (pr+p2)?

where wyp is the growth rate of the unmagnetised hydrodynamical instability,
given by

2 1/2
w:kﬂlu1+P2U2 +Ele2 90 P1p2 ] 9.51)

P2 —p1

2
wy = gk
0 yp1+p2

(9.52)
Physical mechanism: If the upper fluid is denser than the lower, any perturba-
tion of the interface will result in a lower energy configuration, since the gain
in gravitational potential energy resulting from lowering a dense fluid element
is greater than the additional potential energy required to raise the lighter
fluid. The magnetic field acts as an additional pressure contribution, which
can stabilise the velocity discontinuity, if |u; — u2| < (p1 + p2)ca/(p1p2)/2

9.4.4 Cylindrical Pinch Instabilities

A perfectly conducting isolated, self-confining and incompressible cylindrical
MHD plasma of radius @ bounded by vacuum carries an imposed, uniform,
internal axial magnetic field B9, an imposed, uniform, external axial field B,,
and an external, azimuthal, magnetic field arising from the surface current,
so that B = 8 By(p) + Z(Bo + B;e) in cylindrical co-ordinates (p, 6, 2).
Perturbations of this equilibrium are assumed to take the form f(p) exp[i(mé+
kz — wt)], where m = 0,1,2,... . The general dispersion relation for such
perturbations is [19)]

W _ | (B mBya) * I, (ka)Km(ka)  B3(a) 1 It (ka)
k2c2 By ka By ) In(ka)K! (ka) B2, ka I (ka)

where I, and K, are the modified Bessel functions of the first and second
kind, of order m, respectively, and

¢ = Bl/(topo)  (SD) (9.54)
= Bh/(mpo)  (cgs) (9.55)

Note that the azimuthal magnetic field component is confined to the plasma
surface only, and so does not enter into the Alfvén speed (9.54).

(9.53)
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Fig. 9.3 Diagram showing the sausage instability of a cylindrical plasma. Note the
increased magnetic field at the narrowest region.

9.4.4.1 Sausage Instability: m = 0 Axisymmetric perturbations have m =
0, and if in addition, B, = 0 satisfy the simplified dispersion relation

w? B3(a) 1 Ij(ka)
= - — 9.
wa (1 B2, ka Io(ka)) (9.56)
Since I (z) < 3Io(z), then instability occurs if
B2 < $B3(a) (9.57)
The generalisation of (9.57) to compressional plasmas is given in [15]:
w? Bi(a) I)(Ka) K2
e 17 B2, Ralo(Ka) B (0:58)
where
Wt 1/2
K=k|l+ ———————5— X
k [ * kic2cd, — w2k?(c2 + cf,,)] (9:59)
Instability requires
B%, K? I} (Ka) L K2
=0 = f 08 ) 1 .
Bia) = B (Kan(Ka) <2p (9:60)

Physical mechanism: The axisymmetric rippling of the cylindrical plasma pro-
duces regions where the plasma column is narrower than in equilibrium (Fig-
ure 9.3). In such regions, the azimuthal magnetic field is greater, since the
current density is greater; hence the magnetic pressure here is enhanced, and
tends to exacerbate the necking.
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Fig. 9.4 Diagram showing the kink instability of a cylindrical plasma. Note the
increased magnetic field where the plasma surface is convex with respect to the interior.

9.4.4.2 Kink Instability: m # 0 The general expression for an incompress-
ible plasma is given in (9.53), which simplifies in the limit of long-wavelength
perturbations, where ka < 1 [19]:

(Bu +ﬂBs(a))2_m_zBo(a)2]

w2

k2c2

(9.61)

By,  ka By k%a? B2,
Instability occurs if ka is too small, that is, if the wavelength of the pertur-
bation is too large. The Kruskal-Shafranov condition for stability is

B
B,

2ra

I (9-62)

where L is maximum lengthscale in a finite plasma. The stability criterion
(9.62) can also be written

qa) > 1 (9.63)

where the safety factor for a straight circular cylinder is given by ¢ = krB,/Bg.

Physical mechanism: The deformation of the plasma increases the magnetic
field pressure in regions where the magnetic field curvature is convex to the
plasma interior, whilst simultaneously decreasing the magnetic pressure con-
tribution where the deformation is concave (see Figure 9.4). This causes the
plasma to continue to move towards the concave part of the deformation, so
increasing the displacement.

9.4.5 Generalized Pinch Instabilities

The analysis of 9.4.4 is restricted to cylindrical plasmas with circular cross-
section. The stability criteria can be extended to non-circular, non-cylindrical
geometry using a generalised technique known as the energy principle.
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The criteria for stability can be expressed in terms of the safety factor, g,
defined by
d"/}tor
q(r) Topol (9.64)
where 14or and 1h,0; are the toroidal and poloidal magnetic fluxes, respectively,
in toroidal geometry. The safety factor is a measure of the shear in the plasma
magnetic field, and can be thought of as the ratio of the number of times a
magnetic field line winds itself around the long way round a torus (the toroidal
direction) to the number of times the same field line winds itself around the
short way round a torus (the poloidal direction). Different geometries lead to
different explicit formulae for g.

9.4.5.1 Energy Principle The fundamental principle is that energy is con-
served, so that the total of the kinetic and potential energies is always a
constant. Hence any perturbation that decreases the potential energy must
lead to a corresponding increase in the kinetic energy, that is, must produce
an increased velocity perturbation. This indicates that the perturbation is
linearly unstable. An excellent discussion of the subtleties in this theory is
presented in [10]. The energy principle identifies linear instabilities, but does
not directly predict growth rates for those instabilities.

Defining the plasma displacement £ in terms of the perturbed plasma ve-
locity u,

t
£(r,t) = / u(r,t)dt 9.65)
0

allows the linearised momentum equation for an ideal MHD plasma (7.86) to
be written as

12
e B 10

=V (€ Vpo +7poV - €) — By x {V x [V x (§ x Bo)]}/po

+ (V x By) x [V x (€ x Bo)]/to (S1)
(9.66)

=V (€ Vpo+7p0V -£) — Bo x {V x [V x (€ x By)]}/(4r)

+(V x Bo) x [V x (£ x Bo)]/(4r) (cgs)
(9.67)

where quantities with a 0 subscript denote equilibrium values. The energy
principle can then be expressed in terms of kinetic energy perturbations §&
and potential energy perturbations §W as follows:

P P
55 (66 +6W) = 5/

[ (08 + 1€ DF@©) dr =0 (068
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The potential energy contributions arising from the various physical effects
can be summarised as

oW = 6Wp + Wy + dWs (9469)

where 6Wr is the contribution arising from the fluid perturbations; §Wy
comes from the vacuum magnetic field perturbation, and Wy is the surface
current contribution. Note that in plasmas with a free-surface, the analysis of
instabilities involves all three contributions. However, fized boundary plasmas
do not take any surface or vacuum contribution into account.

These individual contributions can be quantified as follows:

fluid contributions:

Wr =3 / (W + wim +wen + wy — w;)dr (9.70)
plasma
where
2
We = BL Alfvén wave (SI) (9.71)
o
2
_B Alfvén wave (cgs) 9.72)
4
2
2 . B2 2
Wy, = 5 V-€+ M Magnetosonic (SI) (9.73)
Ho Bg
2
H -V (B} +8
= By V-€+ é'(o—zﬂm Magnetosonic (cgs) (9.74)
4 B3
we, = ypo|V - € Acoustic (9.75)
wy = J°égB° (Box¢&)-B Kink (9.76)
w; =2(€-Vpo)€ -k Interchange 9.77)

and where k is the magnetic curvature:
& = (By - VBy)/B} (9.78)

Note that in (9.71-9.77) subscript 0 denotes an equilibrium quantity, and L, ||
refer to components perpendicular and parallel to the direction of the equilib-
rium magnetic field Bo. It is clear that only the kink wy and interchange w;
terms can destabilise the plasma, since all other terms are positive definite.
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vacuum contribution:
oWy =1 / B /uodr  (SD) (9.79)
vacuum
=1 / |B?/dndr  (cgs) (9.80)
vacuum

quantifies the contribution from the vacuum magnetic field perturbation.

surface contribution:

ows= [ O] o+ BY/Ow) [0S () @8

—
=3

€°V[ (po+ B3/(8m) [ -dS  (cgs) (9.82)

sur face

where the notation [} - - - [] signifies the jump at the boundary of the quantities
enclosed by the brackets. Hence if there is no surface current present, (9.81)
vanishes.

9.4.5.2 Suydam Criterion When applied to straight cylinders of circular cross-
section, the energy principle shows that stability demands

N\ 2
8
(%) + "13’2’ >0 (S (9.83)
N 2 /
32
(%) +25 >0 () (9.84)
2

where the safety factor ¢ in this context is given by

o 710)
q(r) - kTBg (‘7‘)

(9.85)

9.4.5.3 Mercier Criterion 'The energy principle analysis admits a more gen-
eral stability description applicable to non-cylindrical plasmas, extending the
Suydam criterion (9.83). For toroidal plasmas, with major radius R and mi-
nor radius r, the Mercier criterion governs the plasma stability for r < R,
and f K 1:

q(r) Su p'(r) 2
(W) o 7 (1-a()>0 (8D (9.86)
(‘I'(_’)> L3y (r) 20 -

o) - q(r)?) >0 (cgs) 9.87)
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where B, is the toroidal magnetic field component, By is the poloidal mag-
netic field component, and the safety factor ¢ is defined in this context as

_ T‘BV’ (r)
q(r) = BB (r)

Note that the pressure and magnetic field depend only on r.

(9.88)

9.4.6 Resistive Drift Wave Instability

A semi-infinite plasma with a plane vacuum interface has a uniform magnetic
field By present everywhere. Assume a density gradient nj perpendicular to
the interface, and perturbations of the interface going as exp[i(k - r — wt)].
Then the interface wave is linearly unstable, satisfying the dispersion relation

w? +i0(w — k1vpe) =0 (9.89)
where
kL
o= k_zwciwce‘rei (9.90)
Il

is the plasma conductivity. Here

_ nhksT,

=m0 ¢Bo (9.91)

VDe

is the diamagnetic drift speed for electrons (6.46), 7.; is the electron-ion col-
lision time, and

k" =k-Bo/By (9.92)
ki =k —k Bo/Bo (9.93)
Note that k1 < kj, and cin,; < w/kj < Cthe-

Physical mechanism: Electrons drift diamagnetically along the interface, but
lagging the fluid perturbation by virtue of the imperfect conductivity. This
creates a space-charge density and a resultant electric field, which enhances
the original interface distortion.

9.4.7 MHD Resistive Wall Instability

An ideal incompressible MHD flow parallel to a resistive wall is unstable if a
critical flow speed is exceeded [95]. The wall has resistivity n and thickness
4, and is separated from the plasma by a vacuum region of distance d. The
plasma has a uniform flow velocity u in the z-direction, parallel to the wall.
This flow is unstable to perturbations of the form expi(kz — wt) if

bl > v3e, (9.94)
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with the frequency and growth rate given by

P et S (VW1 (—2kd)) ke (9.95)
™ 82 + 2 exp(—4kd) Ca P v :
where
_n
o= (8D (9.96)
nct
=45 (cgs) (9.97)

In the low resistivity limit, the growth rate y, may be approximated as

u? —

2c2
e exp(2kd)kcw (9.98)

Yo =Im(w) »

Physical mechanism: The presence of the imperfectly conducting wall distorts
the magnetic field associated with the interface perturbation, producing a time
lag in the field evolution. For flows exceeding the critical speed, a current sheet
on the plasma surface is induced which destabilises the plasma pressure in the
perturbation.

9.4.8 MHD Resistive Tearing Mode

A sheared magnetic field in an incompressible resistive MHD plasma is subject
to a tearing mode instability, in which magnetic islands form around a critical
layer when the stationary equilibrium is disturbed.

Taking the gradient scale length of the equilibrium magnetic field By to be
L, the critical layer width to be €L, the wavenumber of the perturbation to
be k, and the plasma constant mass density and constant resistivity to be p
and 7 respectively , then the growth rate -y of the instability can be estimated
empirically to be [72]

g~ a5 A8 (9.99)
where @ = kL > 1, and 74, 7g are the Alfvén transit time, and resistive

diffusion time, respectively, defined in (2.13) and (2.15). The width of the
critical layer is estimated to be

2\ 1/4
L ~ (ZZ”;’;) (1) (9.100)
0

1/4
~ (k;’g ’,’2) (SD) (9.101)
0
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=
- o

Fig. 9.5 Diagram showing the evolution of the tearing mode instability. The initial
sheared magnetic field equilibrium is shown on the left, and the consequent magnetic
island shown on the right.

where B(, denotes the derivative of the equilibrium magnetic field.
A more detailed treatment extended to toroidal geometry yields [10]

2 7
7y % 0.557, 2217 P a= /5 (n%) (9.102)

where n is the toroidal mode number, R is the toroidal radius, and g is the
safety factor (9.64); ¢’ denotes the derivative of ¢ with respect to minor radius.
The maximum growth rate yas can be estimated as [37, 89]

Yo ~ 0.638Y2r5t = 0.63(raTr) /2 (9.103)
which occurs at wavenumbers given by

an~ ST (9.104)

Physical mechanism: The plasma in the critical layer ceases to be ‘frozen’ into
the magnetic field, and becomes detatched from it. The currents so generated
create an additional magnetic field which permits the equilibrium field to
reconfigure into an island structure (Figure 9.5, the latter state having lower
energy than the initial one, and so representing an unstable process. Note that
this is a long wavelength instability (oo > 1) of a stationary, incompressible
resistive MHD plasma, with constant resistivity and mass density.

9.4.9 Streaming Instability

This instability is also known as the Buneman instability, the beam-plasma
instability, and the two-stream instability.

The plasma is cold, unmagnetised and unbounded. Each plasma species has
a constant equilibrium drift velocity uos with respect to some reference frame.
The dispersion relation for small amplitude perturbations of this equilibrium,
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with frequency w and wavevector k is

s Yoy (9.105)
@k '

For the specific case of stationary ions (that is, observing from the ion rest-
frame) (9.105) simplifies to

(w—k - uei)? (@ — w}) =ww?, (9.106)
For low frequencies w < wp; (9.106) admits complex roots.

Physical mechanism: The perturbed motion of one stream of charged par-
ticles induces a mirror charge distribution in the other stream; for critical
wavelengths, these charge concentrations interact sympathetically to enhance
the amplitude of the wave, leading to unbounded growth of the perturbation.

9.5 KINETIC INSTABILITIES

9.5.1 Bump-in-Tail Instability

For an unmagnetized plasma, the general dispersion relation (7.137) has com-
plex roots if the distribution function has two or more maxima in velocity
space. A simple case is where the plasma distribution function consists of the
superposition of two Maxwellian distributions at different temperatures:

n
fo= a?a; exp(—b1v?)

+ %zaz%é(vz)é(vy) [exp{=b2(v: — 0)*} + exp{~ba(v: + v0)*}]
(9.107)

where a; = m2/2(27rkBT,<)‘3/2, b; = me/(2kBT;), 6 is the delta function, and
ni/no is the relative fraction of the total plasma at temperature 7;. The
limiting case ng/no < ny1/no, vo 3> 2kgT1/m. is referred to as the ‘bump-in-
tail’ instability [50]; the choice of model distribution function in (9.107) is to
simplify the analysis by virtue of its symmetry.

The maximum growth rate -y, for the bump-in-tail instability is given by

o m\1/2 ng noTh 5.5 mevd —1/2 1 3
m=(5) AL, [m:rz’“ A e TP (‘wvm N 5)]

(9.108)
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where
GokBTl
22 = o (S (9.109)
kBT
= 41:;1;2 (cgs) (9.110)

Physical mechanism: The bump-in-tail instability is really a special, limiting
case of the two-stream instability in Section 9.4.9.

9.5.2 Electron Runaway

An electric field E applied to an electron plasma with stationary ions will
produce continuously accelerated electrons if E > Ep where [4, 41]
_ VeiMel

T e

Ep (9.111)
where v,; is the electron-ion collision frequency, m,. is the electron mass, and
U ~ Cthe i the speed at which runaway is triggered. Using the Rutherford
scattering formula for a 90° defection (6.6) as the form of v; yields

2
__ nigielnA
Bp = o Traymd (SD) (9.112)
qPel
—mgelnd oy (9.113)
mfcth,e

Ep is known as the Dreicer field. For E > Ep, Ohm’s law J = o F ceases
to be valid. Those electrons in the electron distribution function with initial
velocities parallel to Ey will become runaways, even for Ey < Ep. The
fraction of such runaways is given by

Ny 1
— o~ — -E 9.114
" 5 exp(~E/Eo) (9.114)
for By < Ep.

Physical mechanism: 'The collisional drag term is speed dependent, and so
particles which exceed a critical velocity under the influence of an applied

electric field are exposed to unbalanced acceleration. Ultimately any such
stream of runaway electrons will become unstable by other mechanisms.

9.5.3 lon-Acoustic Instability

For an isotropic kinetic plasma in which the electrons at temperature 7 drift
with speed ug through the ions, the latter having temperature T; <« T, the
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dispersion relation for waves is

kc;
2 __ ia
Y = TR PV (9.115)
T\1/2 _
wi=—lorl (5) L+ KB 2 x
Tc 82 1 Te 2412 -1
(3" 150
iy v 1- 2011 p22,)1/2 } (9.116)
m; Cia De

where ¢;, = (kpTi/m)!/? is the ion-acoustic wave speed, and wy, w; are the
real and imaginary parts of the wave frequency.

When the electron drift speed ug is zero, (9.115) and (9.116) are identical
with the results of Section 7.4.3. However, if

Cia BT\ '/
__ il = : 1
ug > (1+k2'\21_7e)1/2 > ( o ) Cth,i (9.117)

then w; > 0, and the ion-acoustic waves grow, rather than decay. For the
limiting case T, > T; so that the damping term can be ignored,

1/2
_(mme ug — |w, /k|
wi= (8 mi) by, (0118)

Physical mechanism: The ion-acoustic mode is normally heavily damped, un-
less T; < T, in which case it is only slightly damped. However, the streaming
of one plasma component past another can induce instability, and so the weak
drift of hot electrons past stationary, cool ions can be such that any residual
damping is more than compensated for by the streaming instability.
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10.1 VECTOR ALGEBRA

SYMBOL || DEFINITION
a,b,c,d | arbitrary vectors

a-(bxe)=b-(cxa)=c-(axb) (10.1)
ax((bxc)=bla c)—cl(a-b) (10.2)
(axb)-(exd)y=(a-c)(b-d)—(a-d)b-c) (10.3)
(axb)x(exd)=(axb-dc—(axb-c)d (10.4)
ax(bx(exd)=0b-d(axc)—(b-c)(axd) (10.5)
(axb)-[(bxc)x(cxa)]=[a-(bxc)] (10.6)
(ab) - (ed) = a(b-c)d (10.7)

(ab) x c=a(b x ¢) (10.8)

(ab) : (ed)y=(a-c)(b-d) (10.9)
(ab—ba)-c=(bxa)xe (10.10)

The definition of the dyad ab is

aiby  aiby aibs
ab=| asb1 azby asbs (10.11)
asby  agby asbs

where a = (a1,a2,a3) and b = (b1, by, bs). Consequently, ab-c=a(b-c).

10.2 VECTOR CALCULUS

SYMBOL || DEFINITION

f9 arbitrary scalar functions
u,v arbitrary vector functions
V(fg) = fVg+gVf (10.12)
V-(fu)=fV-utu-Vf (10.13)
VX (fu)=fVxu+uxVf (10.14)
V-(uxv)=v-Vxu—u-Vxv (10.15)

Vxuxv)=u(V-v)—v(V-u)+ (v V)u—(u-V)v (10.16)
168
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P(x,y,2)

x Yy

Fig. 10.1 The point P in the Cartesian co-ordinate system.

V(u-v)=ux(Vxv)+vx(Vxu)
+(u-Vv+ (- Vu
V-(uv)=(V-u)o+(u-Vv
V- (vu —uv) =V x (u x v)
VxVf=0
V- (Vxu)=0
V x(Vxu)=V(V-u)-Vu
V-Vf=Vf
V2(f9) = fV?g +2(V) - (Vo) +9V*f
V2(fu) = (VY- u) + fV(V-u) + (V) x Vxu
+ @ V)VH + (V- V)u

10.2.1 Cartesian Co-ordinates

169

(10.17)
(10.18)
(10.19)
(10.20)
(10.21)
(10.22)
(10.23)
(10.24)

(10.25)

Using the standard Cartesian co-ordinates (see Figure 10.1) (z,y, 2) with re-

spective unit vectors X, ¥ and z, we have:

u = Xug + Juy + Zu,
_ Ougy | Ouy  Ou,

Veousa 8y ' 0z

(10.26)
(10.27)
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f f of
Vi=% 3_ 3_ 5- (10.28)
Ouy
= (5% )

8
P)
T
+2 (%— o ) (10.29)
Vif = o +53 azf s+ o3z &1 (10.30)
oz? 822 ’
Viu =% (Vug) + 9 (V2uy) + 2 (V?u,) (10.31)
. vy Oy
(u Vv)—x(uz x+u”3y+ ’az)
N ov v v
+y (uz 6; +u,, L tu, a”)
N Ov, 811, Bv,
+2z (ug o Ty By ) (10.32)
. 0 (Ouz  Ouy  Ou,
viv “)"‘%<ax £ az>
+ ¢ 2 % + % + Ou,
Yoy\oz "oy T B
L0 s | Ouy | Ou,
+Z§<%+W‘F B2 ) (10.33)

10.2.2 Cylindrical Co-ordinates

Using the standard cylindrical co-ordinates (see Figure 10.2)(p, ¢, 2) with re-
spective unit vectors p,¢, 2, the following relationships hold:

u = pu, + pug + du, (10.34)
p=%cosp+ysing (10.35)

é =—xsing+9 cosg (10.36)
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P(p.9.0)

Fig. 10.2 The point P in the cylindrical co-ordinate system.

dr = pdp + ¢ pdg + 2dz
13u¢ Ou,

V-u= =

pap(p o)+ » 0%

af .10f . of

Vf= pa—+¢———+z§
_ . (10u; Ouy
qu—p(pa¢ 31)
- (Ou, Ou,
+¢a m)

of\ . 1% &%
( )ﬁW*w

p* 06 P
A 2 0u, uy
s (e 353)
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(10.37)

(10.38)

(10.39)

(10.40)

(10.41)

(10.42)
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P(r,0,0)

Fig. 10.3 The point P in the spherical co-ordinate system.

o T P06 Bz g

v ’IL¢ 6v¢ 6v¢ Ugp p)

u.vv:i)(uﬂf)i_'_uo,av,, v, u.,,v.,,)
( T T T,

N Ov, . ugOv, Ov,
+2 (u,, B + > 96 +u, 6z) (10.43)

10ug | Ou,
2 loun)+ 3+ 52

ﬁ(lg( )+16u¢+6u,>
T 009

.0 (10 10uy | Ou,
+za—(pap(p u,) + p6_¢+ az) (10.44)

10.2.3 Spherical Co-ordinates

Using the standard spherical co-ordinates (see Figure 10.3) (r,6, ¢) with re-
spective unit vectors ¥, @ and ¢ we have:

u=i‘u,+9u9+q§u¢ (10.45)
f = X sin (A)cos (¢) + ¥ sin (8)sin (¢) + 2 cos (9) (10.46)
6 =% cos (8)cos (¢) + ¥ cos (8)sin () — 2sin () (10.47)

é = —%sin (6) + ¥ cos (¢) (10.48)
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dr = dr +6rdf + $rsin6de (10.49)

V-u= %a%_(rzur) 0 F (ugsmb‘) + rsilnﬁaa% (10.50)

vi= gf +03 : Z; ¢ rsilnG % (10.51)
Vxu=£f rsinf 60(u¢sm0) rs:noaa%)

. 1 Ou, 190
+0 rsinG%_;E(m*’))

(i
+¢ ( L 6“') (10.52)

rar( rug) = r 00

by 10 (a00Y, 1 0 (. or
Vf_rza'r( or) T sme o6 \*" P

1 9%f

e (10.53)

+6 <V2u0+%%—£—;%—§%%)

+¢ (v2u¢‘,z:£29 rzsino%g ,3;’?,?3,,%”) (10.54)
u-Vo=* (u,%+%%+r;ﬁo%_usvo:u¢v¢)

+0 (u e el te Do, o enpcord)

+$("’6L:+u:%ue¢ r:£0%+w) (10.55)



174 MATHEMATICS

7] 1 1 0Ou
V- “)_rar (r2 6r(r rsmﬁBG(wsm )+rsm0 6:;)
.19 1 1 du
r 36 ( 2 ar ) + rsi n066‘(u0sm0) Y 84?)
. 1 8 (1290 1 Ou
+9 ne s (rz ar(run) + o oao(“"s“‘o) * sinoa_qf)
(10.56)
10.3 INTEGRAL THEOREMS
SYMBOL || DEFINITION
C closed curve forming the boundary of the surface S
S regular 2-sided open surface with boundary C
dr line element along C
i unit outward normal to a surface
a/0n directional derivative in the direction of i
ds scalar surface element
ds =ndS
P) regular closed surface containing volume V
14 volume contained by surface ¥
dx scalar surface element
a= =ddX
dv volume element
u arbitrary vector
19 arbitrary scalars

10.3.1 Stokes’ Theorems

]f fdr = / / (dS x W)f (10.57)

?{fdg_ f.gdf /dS (Vf xVg) (10.58)

fu dr = //(V x u)-dS (10.59)
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fuxdr:—é/(deV)xu

10.3.2 Gauss' Theorems

é/wdx:/J/V-udV
é/uxdE:—/V/ V x udv
l/fd:::/vf/wdv

10.3.3 Green's Theorems

//f%dE:///(fVQH"'Vf'Vg)dV
x v
// (fg_i —yg—i) == ///(fv2y—gv2f)dv
E v

10.4 MATRICES

SYMBOL | DEFINITION

M arbitrary matrix of dimension p X ¢

mij i, jth entry of M

A arbitrary square matrix of dimension p x p
aij 1, jth entry of A

N set of positive integers

The matrix M can be written in the form
M = [my]

mi1 M1z ... Mg
ma21

Mpy  eev -o. Mpg

175

(10.60)

(10.61)

(10.62)

(10.63)

(10.64)

(10.65)

(10.66)

(10.67)
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where the indices i = 1,...,p,and j =1,...,¢, p,q € N. A square matrix is

one where p=gq.

10.4.1 Matrix Transpose

The transpose of M is obtained by exchanging rows with columns:

10.4.2 Complex Conjugate

MT = [m,-i] .

(10.68)

The complex conjugate of a matrix is obtained by taking the complex conju-

gate of every entry:

10.4.3 Symmetric

A is symmetric if

and is skew-symmetric if

10.4.4 Orthogonal
A is orthogonal if

10.4.5 Nilpotent

A is nilpotent if

for some k € N

10.4.6 ldempotent
A is idempotent if

M = [mj]
AT =A
AT =-A.
AT — A-1
AF =0
A=A

(10.69)

(10.70)

(10.71)

(10.72)

(10.73)

(10.74)
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10.4.7 Triangular
A is triangular if

a;; =0, j <i (upper triangular) (10.75)
a;; =0, j > i (lower triangular) (10.76)

A is strictly triangular if in addition to being triangular, [a;;] =0, i =1,...,p.
All strictly triangular matrices are nilpotent.
The eigenvalues of a triangular matrix are the diagonal elements.

10.4.8 Trace

The trace of a square matrix is the sum of the entries in the main diagonal:

tr(A) = i Qi (10.77)
i=1

10.4.9 Determinant and Inverse

The determinant of the general square matrix A is readily defined, albeit
technical in construction. The interested reader is referred to [75] for further
details. Instead we shall quote specific results for 2 x 2 and 3 X 3 matrices.
2x 2 case

detA = |A|

_len a2

a1 a2
= Q11022 — @12021 (10.78)
AT = (AT [ a2 '“2‘] (10.79)

—a12  an
Ix 3 case
detA = |A|

a;l a12 Q13
=la21 a2 Q23
a1 as2 ass

= 011022033 — 011023032 — @12321A33
+ a12023a31 + 013G21032 — 013022031 (10.80)
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A=A x
Q22033 — G23G32  —012033 + G13G32 Q12023 — Q13022
—021033 + G23G31  @11G33 — G13G31  —G11023 + @13021
@21Q32 — 022031 —011a32 + @12@31  @11022 — Q12021

(10.81)

10.4.10 Partitioned Matrices

The array of elements belonging to the rows i1, iz, ... , ¢ and columns ji, jo, ...

of the matrix M constitutes a submatrix M; of order r X s.
Let A be the partitioned matrix

_[Ar A
A= [ Ay AJ (10.82)
where the A; are submatrices of the square matrix A. Then if A; and A4
posses inverses, then [3]
Al [ (M- AATTAG)T (AsAT A5 — A1) T ARALY
(AsAT Az — A9) T AGATT (Aa-AsATTAY)T |

(10.83)
In particular, if all the A; are invertible, then
o1 [(AL— AZAZIA:;)_I (As — A4A2_1A1)_l
AT = [(A2 CAAIADT (As— AsATMAy)Y| (10.84)

10.4.11 Eigenvalues and Eigenvectors

The eigenvalues A;,¢ = 1,...,p of A are the roots of the characteristic poly-
nomial defined by

|AT— A| =0. (10.85)

Note that the determinant and trace of a square matrix can be expressed in
terms of its eigenvalues:

tr(A) = i Xi (10.86)
=1

|A| = f[ Xi (10.87)
i=1

The eigenvectors &;,i = 1,...,p associated with the eigenvalues of A are
defined by

Afi = AiEi ,i = 1, ey D (1088)
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10.4.12 Hermitian Matrix

A Hermitian matrix is one for which the transpose is equal to its complex
conjugate:

AT = (A)". (10.89)
The matrix is skew-hermitian if

AT=—-(A)" (10.90)
Clearly a real Hermitian matrix is a symmetric matrix. Note that Hermitian
matrices have real eigenvalues.
10.4.13 Unitary Matrix
A unitary matrix has the property:

AT =(A"! (10.91)

Orthogonal matrices are then unitary ones with real entries.

10.5 EIGENFUNCTIONS OF THE CURL OPERATOR

SYMBOL | DEFINITION

a | arbitrary vector

& | parameter, with values £1

. | unit vector corresponding to k&
P, (r;a) | eigenfunctions of curl operator

The eigenfunctions of the curl operator can be defined as follows [69]. Let
the variable & take the values 1,0,-1, and define the corresponding unit vec-
tors Q,, by

Qo(a) = —a/a, (10.92)

o5 (et -v)
+3 (“—l +ai"av ) } (10.93)
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Then the eigenfunctions ¥ .(r;a) of the curl operator can be defined in terms
of the Q,(a):

O, (r;a) = (27)"%2Q,(a) exp(ia - 1), (10.94)
and possess the following properties:
V x ¥ (r;a) = ak¥,(r;a), (10.95)
V - ¥,(r;a) =0for k = £1, (10.96)
V - Wy(r;a) = —ia(2r) "2 exp(ia - 7). (10.97)

Equation (10.95) demonstrates that ¥, (r;a) are the eigenfunctions of the
curl operator, with corresponding eigenvalues ax. Since the @, (a) span the
vector space, then any vector field can be decomposed, using the ¥.(r; a) into
3 modes: one irrotational, and two of opposite normalised helicity. Further
details about applications in electromagnetic theory and force-free magnetic
fields are given in (63, 69].

10.6 WAVE SCATTERING

10.6.1 Simple Constant Barrier

second order scattering 'The simplest case is a piece-wise continuous medium
which supports waves of wavenumber & for z < 0 and > L, but which has
evanescent behaviour for 0 < z < L. The differential equations are

d?y 2

@+ky=0 <0, z>L (10.98)
2

g%-mzyzo 0<z<L (10.99)

where & characterises the evanescent behaviour inside the barrier. The form
of the solution is then

y=éek +Re* <0 (10.100)
y=Ae" +Be *® 0<z<L (10.101)
y = Telke z>0 (10.102)

Solving for R, T', A and B yields

_ (p? —1)(k% + £?)
R= oD =) + 5ke(E 1) (10.103)

dikipe kL

T= =2 - 1)+ (@ + 1)

(10.104)
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A=t i) f SR (2 1) (10-105)
= M 1) £ BT (10-106)
where p = exp(kL). Energy conservation yields
|R® + T =1, (10.107)
a consequence of the fact that
W(y,y*) = constant (10.108)

where W(u,v) is the Wronskian of the two functions u(z) and v(z), defined
by

W(u,v) = w' —u'v, (10.109)
fourth order scattering Here there are 2 distinct waves, and so 4 possible wave
solutions. The governing differential equation is

dh

dot T %4e
where «, B and 7 are real constants. The dispersion relation for waves of
wavenumber k is

+ 16 + yu=0 (10.110)

k' — ak® - Bk +~y=0. (10.111)
There are 3 invariant quantities Z;,7, and Z3 associated with (10.110) [31]:

=W*",u") +ifu*'u’ — YW(u*,u) (10.112)
Ty = W' (u*,u) — 2W(u*' o) + aW(u*, u) +ifu’u (10.113)
Ty = u*'u" +u'u*" —u*"u" + ou*'v + yutu (10.114)

where W(u,v) is the Wronskian of the two functions u(z) and v(z), defined
by

W(u,v) =uwv' —u'v, (10.115)

and where v’ = du/dz.

Consider the particular case of a piecewise homogeneous medium having
three distinct regions I, II and III, in which the physical properties of I and
III are identical, but II is different. The definition of the regions, and the
appropriate solutions to (10.110) in each can be taken as:

RegionI: —co <z < —L  uy =exp(ikiz) + Cy exp(—ikiz)
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+ Ca exp(—ikez) (10.116)

RegionII: —L<z <L  uy = D;exp(ilhz)+ Dy exp(—iliz)
+ D3 exp(iloz) + D4 exp(—ilaz)
(10.117)

Region IIL L <z < oo urrr = Fi exp(ik1z) + Frexp(ikez)  (10.118)

Then the the formula governing energy scattering between channels is:
k:
[Ch + B — ﬁp (Icaf + |F2|2) =1 (10.119)

where

_ (K- B)( —15)

=2 1/, 2 2/ .12
) (10.120)

10.6.2 Phase Integral Method

The phase-integral method, also known as WKB or JWKB, is a technique for
determining the asymptotic solution to the ordinary differential equation [43]
d2u(z)

dz?

+ h2g(z)u(z) =0 (10.121)

where h is a constant, and the wave potential g(z) satisfies:

g(z) is continuous for all z; (10.122)
h%g(z) — constant as h — oo for fixed, arbitrary z; (10.123)
‘#’ & 1for all |z| > z; (10.124)

2 2
’%’ < 1for all [z] > ; (10.125)

for some z.
The approximate, independent solutions u to (10.121) for sufficiently large
z take the form

Ug ~ [q“/ “exp (iih / g de’)] [1+0(2)], (10.126)

where

B 5, 2 "
Oh2) ~ %‘12 - ?H (10.127)
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using the notation ¢’ = dg/dz.
For the particular problem of waves encountering an overdense potential
barrier, where the wave potential has zeros at +a and takes the form
q(z) =22 —a?, (z, areal) (10.128)

then the energy reflection and transmission coefficients R and ' take the
form

1

|R]> = e p—- (10.129)
2
a,—a
|T? = ﬁ (10.130)
with

b

[a,b] = exp(ih/ q'/%ds). (10.131)

The asymptotic solutions, valid for |z| 3> a are given by (10.126) for left- and
right-going waves. A more general treatment of coupled wave solutions can
be found reference [42].

10.6.3 Mode Conversion

Approximate methods for calculating wave scattering in inhomogeneous me-
dia, without resorting to the complex and involved higher-order phase integral
method or similar techniques, was developed based upon local dispersion re-
lations and their properties. The basic idea is that the wavelength of a distur-
bance evolves continuously as it propagates in a spatially non-uniform plasma,
reaching at least one critical position where there are two very simlar solu-
tions to the local dispersion relation. Wave energy may then be distributed
between otherwise distinct modes, in a process termed mode conversion.

For simple binary mode conversion [20] in an inhomogenous plasma, sup-
pose the wave mode amplitudes are ¢; and ¢2, and are governed by a local
dispersion relation

(W-—w)w—w)=n (10.132)

where w (k,z) and wz(k,z) are the local frequencies of the two modes with
corresponding amplitudes ¢;, k is the local ‘wavenumber’ in the direction of
the inhomogeneity, and z is the independent variable. A wave of frequency
wo and wavenumber ky propagates through the inhomogeneous plasma, en-
countering the point zo at which wy(ko,zo) = wa(ko,Zo) = wo. Hence, near
Zo,

k=ko+3, (10.133)
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z =29 +§&, (10.134)
wy = wo + ad + b, (10.135)
we =wp + 0+ g¢ (10.136)

assuming Taylor expansions near zo. The model equations to be solved are
as follows, motivated by (10.132):

dér ., b, . (n@)\"?
* —i(ko — E§)¢1 =i (?) @2,
1/2
& - L =1 (T20) . (10137)

The solution with nonzero ¢, ¢, for £ < 0, and only ¢; nonzero for & > 0
yields an energy transmission coefficient

IT|* = exp (—%) . (10.138)

The energy ‘reflection’ coefficient is |R|? = 1 — |T?; however, the energy is
deposited in ¢q, and so represents energy converted from the original mode.

Note that (10.138) is derived using the asymptotic expansion of the solution
to (10.137), but that the latter is restricted to a small region around zo where
(10.134)-(10.136) hold. Care must be taken to ensure that the local dispersion
relation is a meaningful concept.

A generalized higher-order approach to mode conversion [90] concentrates
on the solutions to a model comparison equation, termed the tunneling equa-
tion:

dy(2) 2 dz_y
At + X Z 4.3

The pseudo-dispersion relation for waves is derived from (10.139) in the form

+(M\z+7)y =0 (10.139)

k= 222k + Az + (10.140)

with approximate solutions

ke m (W22 —1)1/2 (10.141)
1/2
byt (1 + 1;;) (10.142)

The asymptotic solution of (10.139) can be written as a superposition of these
limiting modes, where f, s denote fast and slow solutions respectively. Power
conservation can be written in the form

R2+ T2+ pC%=1 (10.143)
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p=(1—-e2m! (10.144)
1
n= ,r_;;;’ (10.145)

for the case of an incident slow-mode yielding a reflected slow-mode com-
ponent (R), a transmitted slow-mode component (T), and a mode-converted
fast-mode (C) travelling in both directions. The precise proportion of con-
verted mode and transmitted mode depend in detail on the actual physical
problem, and general expressions are not easily presented in summary; see
[90] for full details.

10.7 PLASMA DISPERSION FUNCTION

Linear wave analysis of a hot plasma with a Maxwellian equilibrium involves
the plasma dispersion function, defined as [36]

1 [0 g—a®
Z()=nt / do (10.146)
—00 T — C
or alternatively,
2 14 2
Z(¢) = 2ie~¢ / e tdt (10.147)

The main properties of Z(¢) are as follows:

for all (: % =—2(1+(Z) (10.148)
1

Z€ro argument: Z(0) =in2 (10.149)
1

real argument: Z(z) = irze® — 2zY (z) (10.150)
1

imaginary argument: Z(iy) =ir2e¥"[1 — erf(y)] (10.151)

symmetry: Z(¢) =-[2(-0Q" (10.152)

e [T .
for real 2 Y(z)= T/ et dt (10.153)
0

1

Power series: Z(¢) =in2e ¢ —2¢ (1 —202/3+ 4C"/15+---)

(10.154)
Power series: Y(z) = 1o~ (1+1/(22°) + 3/(42") + - --)

(10.155)
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asymptotic expansion: Z(¢) = Z(z +iy)

simboe® ¢ (141/(20) +3/(4¢) + )

(10.156)
asymptotic expansion: Y (z) ~ 1272 (14 1/(22%) + 3/(4z%) +---)
(10.157)
where in (10.156),
y>0
o={1 y=0 (10.158)
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GUIDE TO NOTATION

SYMBOL MEANING REF
A magnetic vector potential
bo critical impact parameter (6.6)
b ratio of thermal to wave mode energy (7.162)
B magnetic flux density
c speed of light in vacuo
Co Alfvén speed for the plasma (2.24)
Cas Alfvén speed for species s (2.22)
Cth,s sound speed for gas species s (2.25)
Cin gas sound speed (2.25)
d electrode separation
dg planar sheath extent
D, ambipolar diffusion coefficient (3.42)
D, diffusion coefficient for species s (3.32)
e internal energy (8.126)
Ep Dreicer electric field (9.111)
E electric field
E; incident electric field
E, scattered electric field
f distribution function
fo equilibrium distribution function
fn Druyvesteyn distribution function (5.47)
fm Maxwell-Boltzmann distribution function (5.9)
fn fractional electrostatic neutralisation
Fuy fm expressed as a distribution of speeds (5.10)
Fy mass flux through a shock (8.137)
g energy distribution function (5.6)
g acceleration due to gravity
9p energy probability function (5.7)
G Fokker-Planck potential (5.36)
h shock strength parameter (8.136)
H Fokker-Planck potential (5.37)
Ha Hartmann number (2.38)
H magnetic intensity
0 primary electron current at cathode (3.56)
iq electron current at anode (3.56)
I current
Iz Alfvén current (8.92)
I, differential scattering cross-section (2.29)
kB Boltzmann constant
Ip fundamental current in I (8.95)
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SYMBOL MEANING REF
Iy modified Bessel function of order 0
I, modified Bessel function of order n
J current density
Jeot external current density (5.20),(5.22)
Im Bessel function of 1st kind, order m
Ji ion current density (3.9)
Jr longitudinal invariant (6.52)
k scattering wave vector
k; wave vector of incident electromagnetic wave
kg wave vector of scattered electromagnetic wave
kB Boltzmann constant
K generalized beam perveance (8.99)
K modified Bessel function, order m
K cold plasma dielectric tensor (7.20)
my reduced mass (6.1)
Mg mass of particle of species s
M Mach number (2.42)
n refractive index of plasma, = ke/w
Ne cut-off density for an electron plasma (7.56)
Ng number density of particles of species s
N, total number of electrons (3.55)
Neo total number of electrons emitted at cathode (3.55)
D gas pressure
P power
P pressure tensor (5.3)
P total gas kinetic plus magnetic pressure (7.128)
q safety factor (9.64)
qs charge carried by particle of species s
q heat flux vector (5.5)
Q ionization rate
e classical electron radius (4.72)
rL Larmor radius (2.21)
R, magnetic Reynolds number (2.43)
i position vector from origin to field point (4.1)
To position vector from origin to source point (4.1)
R position vector from source to field point (4.1)
)4 unit vector in R direction
Rp pressure ratio across a shock front (8.129)
Ry density ratio across a shock front (8.130)

label defining species:i (ion), e (electron), n (neutral)

continued on next page
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SYMBOL MEANING REF
S Lundquist number (2.41)
T, gas (neutral) temperature
T, plasma temperature
T temperature of gas of species s
u fluid velocity
Up relative speed
up diamagnetic drift velocity (6.44)
7 bulk or mean velocity (5.2)
u bulk fluid plasma velocity (7.81)
Ug velocity of species s
uo ion speed at the plasma-sheath edge (3.4)
u; ion speed in the sheath (3.3)
|4 voltage
Vs breakdown voltage (3.73)

Voymin ~ minimum breakdown voltage (3.77)
wy kinetic energy parallel to B (6.33)
Wy kinetic energy perpendicular to B (6.33)

a normalised wavenumber, = kAp (4.64)
ar first Townsend ionization coefficient (3.56)
B normalised particle velocity, = v/c

¥ polytropic index
g growth rate

Yo second Townsend ionization coefficient (3.67)
r gamma function

T. fluid circulation (8.5)
T, flux of particles of species s (3.28)
Yo relativistic factor, = (1 — g2)~1/2

) plasma skin depth (2.20)
€ ratio of photon energy to scatterer energy, = fiw;/(mc?)

€ energy density (5.4)
€ vacuum permittivity

€ hot plasma dielectric tensor (7.152)
n fluid plasma resistivity

T plasma viscosity
Ap Debye length (2.17)

Amfp,s  mean free path of species s (2.19)

A argument in Coulomb logarithm (6.15)
o vacuum permeability

s mobility of particle of species s (2.34)
Bs mobility tensor for species s in a magnetised plasma (2.36)

continued on next page
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SYMBOL MEANING REF
Wbs magnetic moment of a particle of species s (2.33)
v non-specific collision frequency
vp Budker parameter (8.87)
Ve electron-neutral collision frequency
Ves collision frequency of species s (in Hz)
Ves cyclotron frequency of species s(in Hz) (2.9)
Vps plasma frequency of species s (in Hz) (2.3)
Vgt collision frequency for species s and s’ (2.12)
o polarization operator (4.67)
p mass density of single-fluid plasma (7.80)
Pe free charge density
Ps mass density of species s
Peat external charge density (5.19),(5.21)
Oe Thomson scattering cross-section for single electron (4.69)
oj square of sound over Alfvén speed on either side of shock (8.132)
OKN Klein-Nishina scattering cross-section (4.100)
oy Rutherford differential scattering cross-section (6.2)
Osec collision cross-section (2.29)
TA Alfvén transit time (2.13)
TR resistive diffusion time (2.15)
¢ energy loss factor (5.40)
w frequency of electromagnetic wave
Wes circular cyclotron frequency of species s 2.7
Weeo circular cyclotron frequency of rest electron
wp circular plasma frequency (2.6)
Wps circular plasma frequency of species s (2.1)
w fluid vorticity (8.6)
Q solid angle
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Accelerating point charge
frequency spectrum of radiation, 50
Adiabatic invariant, 83
Alfvén’s theorem, 118
Alfvén
current, 129
ionization, 37
ionizing flows, 127
speed, 18
transit time, 16
transverse shock, 136
wave
cold plasma, 113
instability, 152
MHD, 108
Ambipolar diffusion, 31
in a magnetic field, 32
multispecies, 31
Beam perveance, 131
Beam-plasma instability, 163
Beams, 128
Bennett relation, 149
Bernoulli’s equation, 125
Bernstein mode, 115
Bohm criterion, 25
Boltzmann collision term, 68
Boltzmann equation, 65
Braginskii transport coefficients, 86
Breakdown criterion, 39
Breakdown voltage, 39

Index

Bremsstrahlung, 54
Budker pararneter, 129
Bump-in-tail instability, 164
Buneman instability, 163
Charge density

Lorentz transformation, 4
Child law, 26
Child-Langmuir law, 26
Classical electron radius, 57
Cold plasma

Alfvén wave, 101

circularly polarized waves, 99

cut-off, 100

dielectric tensor, 96

dispersion relation, 97

electron cyclotron wave, 102

extraordinary wave, 102

fast Alfvén wave, 103

ion cyclotron wave, 102

model equations, 95

ordinary wave, 102

oscillations, 98

resonance, 100

whistler wave, 102
Collision cross-section, 19
Collision frequency, 16
Collision term

Boltzmann, 68

Fokker-Planck, 69

Krook, 69
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Collision time, 16, 86
Collision
binary, 77
coulomb, 19
Coulomb
binary, 77
multiple, 78
elastic, 76
inelastic, 77
transformation, 77
Collisional modelling, 68
Compton scattering, 61
Compton shift, 61

Compton wavelength of electron, 61

Conductivity

Braginskii, 90

Spitzer, 86

electrical, 85

thermal, 85
Contact discontinuity, 136
Couette flow, 123
Cowling’s theorem, 119
Cross product, 168
Cross-section

Compton scattering, 61

Klein-Nishina, 61

Rutherford, 19

Thomson, 57
Curl

cartesian, 170

cylindrical, 171

eigenfunctions, 179

spherical, 173
Current density

Lorentz transformation, 4
Cyclotron emission line, 53
Cyclotron emission, 53
Cyclotron frequency, 15
Cyclotron radiation, 50

power in harmonic, 52

spectral power density, 51

total radiated power, 53
Cylindrical beam

infinite magnetic field, 132

no external fields, 131
Cylindrical equilibria, 149
Debye length, 17
Dielectric constant, 20
Dielectric tensor, 96
Diffusion coefficient, 85
Diffusion parameters, 29
Diffusion

ambipolar, 31

Fick’s law, 30
Dispersion measure, 100
Distribution function, 64

Druyvesteyn, 72

in presence of electric field, 71

Maxwellian, 66

moments, 65
Div

cartesian, 169

cylindrical, 171

spherical, 173
Dot product, 168
Double-adiabatic instability, 152
Double-layer, 28
Dreicer field, 165
Drift velocity, 81
Drift wave instability, 161
Drift

E x B, 81

VB, 81

curvature, 82

diamagnetic, 83

external force, 82

finite larmor radius, 81

in electromagnetic wave, 83
Druyvesteyn distribution function, 72
Dyad, 168
Effective ion charge, 86
Electric field

Lorentz transformation, 4

moving point charge, 45
Electrical conductivity, 85
Electromagetic equations, 3
Electromagnetic boundary conditions, 4
Electron attachment, 38
Electron Compton wavelength, 61
Electron cyclotron wave, 102
Electron heat flux

Braginskii, 89
Electron radius, 57
Electron runaway, 165
Electron-positron transport coefficients, 91
Electrostatic waves, 110
Energy distribution function, 65
Energy probability function, 65
Equilibrium

Bennett relation, 149

cylindrical, 149

distribution function, 66

dynamical (solar wind), 125

fluid plasma, 147

force-free, 148

general definition, 147

local thermodynamic, 40

metastable solutions of Vlasov equation,

67

Taylor, 149
Extraordinary mode

cold plasma, 102



Extraordinary mode
hot plasma, 114
Faraday rotation, 99
Fast magnetic shock, 137
general case, 140
perpendicular shock, 139
Ferraro’s theorem, 119
Fick’s law, 30
Field-aligned flow, 123
Firehose instability, 152
Flow
Couette, 123
field-aligned, 123
Hartmann, 121
hydromagnetic, 120
Poiseuille, 122
Flute instability, 153
Fokker-Planck collision term, 69
Fokker-Planck potentials, 70
Force-free equilibrium, 148
Form factor, 60
Frequency spectrum
accelerating charge, 50
Frozen-in field, 118
Gauss’ theorem, 175
Generalized Margenau distribution, 71
Generalized perveance, 131
Grad
cartesian, 170
cylindrical, 171
spherical, 173
Gravitational instability, 153
Green’s theorem, 175
Guiding centre, 81
Hartmann flow, 121
Hartmann number, 21, 121

Heat flux
electron, 89
ion, 90

Hot plasma
Bernstein mode, 115
O-mode, 114
X-mode, 114

Hydromagnetic jump conditions, 134
Hydromagnetic shocks, 134
Impact parameter, 77
Instability
beam-plasma, 163
bump-in-tail, 164
Dreicer, 165
firehose, 152
flute, 153
gravitational, 153
interchange, 153
ion-acoustic, 165
Kelvin-Helmholtz, 155

INDEX

kink, 155

Kruskal-Schwarzschild, 153

pinch, 155

Rayleigh-Taylor, 153

resistive drift wave, 161

resistive wall, 161

sausage, 155

two-stream, 163
Integral theorems, 174
Interchange instability, 153
Intermediate shock, 136
Invariant

adiabatic, 83

longitudinal, 84

magnetic moment, 83
Ton acoustic speed, 111
Ton cyclotron wave, 102
Ton heat flux

Braginskii, 90
Ton-acoustic instability, 165
Ton-acoustic shock, 142
Ton-acoustic waves, 110
Tonization energies

gas-phase molecules, 9
Tonization

Alfvén, 37

Townsend’s first coefficient, 33

Townsend’s second coefficient, 37
Tonizing flow, 127
Tonosphere

table of parameters, 11
Kelvin’s vorticity theorem, 119
Kelvin-Helmholtz instability, 155
Kinetic theory, 63
Kink instability, 155
Klein-Nishina cross-section, 61
Knudsen number, 21
Krook collision term, 69
Kruskal-Schwarzschild instability, 153
Kruskal-Shafranov condition, 157
Landau damping, 110
Langmuir oscillations, 110
Langmuir waves, 109
Laplacian

cartesian, 170

cylindrical, 171

spherical, 173
Larmor formula, 47
Larmor radius, 17
Liénard-Wiechert potentials, 45
Local thermodynamic equilibrium, 40
Longitudinal invariant, 84
Lorentz transformations, 4
Lorentzian conductivity, 85
Lorentzian gas, 78
Lorentzian resistivity, 85
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LTE, 40
Lundquist number, 21
Magnetic bottle, 84
Magnetic field
Lorentz transformation, 4
moving point charge, 46
Magnetic mirror, 84
Magnetic moment, 19
Magneto-acoustic mode, 108
Magnetosonic modes, 108
Matrix algebra, 175
Matrix
complex conjugate, 176
determinant, 177
eigenvalue, 178
eigenvector, 178
Hermitian, 179
idempotent, 176
inverse, 178
nilpotent, 176
orthogonal, 176
partitioned, 178
skew-hermitian, 179
skew-symmetric, 176
symmetric, 176
trace, 177
transpose, 176
triangular, 177
unitary, 179
Maxwell’s electrc 't

Navier-Stokes equation, 120
Negative inertia, 124
0O-Mode

cold plasma, 102

hot plasma, 114
Ohm’s Law

general, 104

single fluid, 106
Ordinary mode

cold plasma, 102

hot plasma, 114
Parallel shock, 137
Paschen law, 39
Perveance, 131
Phase-integral method, 182
Pitch angle, 84
Plasma beam, 128
Plasma column resonances, 150
Plasma cylinder

surface waves, 150
Plasma frequency, 15
Plasma oscillations, 110

maximum amplitude, 98
Plasma pump, 122
Plasma Transport, 75
Poiseuille flow, 122
Ponderomotive force, 83
Power radiated

accelerating point charge, 46

Maxwellian, 66
relaxation times, 79
Mean free path, 17
Mercier criterion, 160
MHD generator, 122
MHD
Alfvén wave, 108
dispersion relation, 107
magnetosonic mode, 108
validity criteria, 106
Minimum sparking potential, 39
Mirror ratio, 84
Mobility tensor, 20
Mobility, 19, 30, 85
Mode conversion, 183
Moments
of distribution function, 65
Momentum transfer
Braginskii, 88
Momentum
Lorentz transformation, 4
Moving point charge
electric field, 45
magnetic field, 46
power radiated, 46
radiation, 45

Radiation scattering

coherent, 60

Compton, 61

incoherent, 58

Klein-Nishina, 61

Thomson cross-section, 57

Thomson, 56
Radiation

moving point charge, 45
Rankine-Hugoniot relations, 135
Rayleigh-Taylor instability, 153
Reduced mass, 77
Relativity

special, 4
Resistive streaming instability, 161
Resistive timescale, 16
Resistive wall instability, 161
Resistivity

Braginskii, 90

Krook, 85

Lorentzian, 85

Spitzer, 86
Resonance

plasma column, 150
Rotation measure, 100
Runaway electrons, 165
Rutherford scattering, 19



Safety factor, 158
Saha equation, 41
Sausage instability, 155
Scattering
Compton, 61
form factor, 60
Schott-Trubnikov formula, 51
Sgn, 136
Sheath
Bohm criterion, 25
equation, 25
number density, 256
planar, 25
Shock
classification, 136
compressive, 135
contact discontinuity, 136
expansive, 135
fast magnetic, 137
hydromagnetic jump conditions, 134
hydromagnetic, 134
intermediate, 136
ion-acoustic, 142
non-compressive, 135
parallel, 137
slow magnetic, 137
transverse Alfvén, 136
Signum function, 136
Single fluid variables, 106
Skin depth, 17
Slow magnetic shock, 137
general case, 141
Solar plasma parameters, 11, 126
Solar wind, 125
Sparking criterion, 39
Special relativity, 4
Spitzer conductivity, 86
Spitzer-Harm conductivity, 86
Spurious entry, 191
Stability
Kruskal-Shafranov, 157
Mercier criterion, 160
meta-equilibria, 68
Suydam criterion, 160
Stokes’ theorem, 174
Stoletow point, 37
Streaming instability, 163
Suydam criterion, 160
Synchrotron emission, 53
Synchrotron radiation, 50
total radiated power, 53
Taylor equilibrium, 149
Thermal conductivity, 85
Thermodynamic equilibrium
local, 40
Thomson scattering, 56

INDEX

coherent, 60
cross-section, 57
differential cross-section, 57
incoherent, 58
Time
Alfvén transit, 16
collision, 16
resistive, 16
Townsend ionization
first coefficient, 33
second coefficient, 37
Townsend
breakdown criterion, 39
current multiplication factor, 33
Transport coefficients, 85
Transport
Braginskii coefficients, 86
electron-positron, 91
Transverse Alfvén shock, 136
Two-stream instability, 163
Vector algebra, 168
Vector calculus, 168
cartesian co-ordinates, 169
curl
cartesian, 170
cylindrical, 171
spherical, 173
cylindrical co-ordinates, 170
div
cartesian, 169
cylindrical, 171
spherical, 173
grad
cartesian, 170
cylindrical, 171
spherical, 173
laplacian
cartesian, 170
cylindrical, 171
spherical, 173
spherical co-ordinates, 172
Vector
cross product, 168
dot product, 168
dyad, 168
Velocity
Lorentz transformation, 4
Viscosity, 85
Vlasov equation, 67
Vorticity evolution, 121
Vorticity stretching, 121
‘Wave scattering, 180
‘Whistler wave, 102
WKB method, 182
‘WKB
asymptotic solutions, 182
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reflection coefficient, 183 X-Mode
transmission coefficient, 183 cold plasma, 102
‘Wronskian, 181 hot plasma, 114



